(1) Reduction weight/volume of CO2, waste, and water

	unit	FY2020			FY2021			FY2022
		Target	Result	Progress	Target	Result	Progress	Target
CO ₂ emissions reduction in production activities	thousand tons	34.2	34.2	0	40	40.6	+0.6	45
Reduced / recycled weight of waste generated	thousand tons	6.5	6.6	+0.1	6.7	7.9	+1.2	8.2
Water consumption reduction	thousand m3	413.1	414.6	+1.5	415	424	+6,0	439

%The targets were determined based on the cumulative reduction by the results of FY2015.

%The unit "ton" means metric ton.

The detailed results are shawn in following link.

https://www.konicaminolta.com/about/csr/esg/index.html

Identification	Name of Chemical	unit	FY2020			FY2021			FY2022
Number	Substance		Target	Result	Progress	Target	Result	Progress	Target
4	Acrylic acid and its water-soluble salts	ton	0	0	0	0	0	0	0
7	n-Butyl acrylate	ton	5.8	5.2	-0.6	5.8	13.5	+7.7	5.8
13	Acetonitrile	ton	12.5	5.9	-6.6	12.5	1.9	-10.6	12.5
31	Antimony and its compounds (Sb equivalent)	ton	0	0	0	0	0	0	0
71	Ferric chloride	ton	0	0	0	0	0	0	0
81	Quinoline	ton	4.5	4.5	0	4.5	4.5	0	4.5
82	Silver and its watersoluble compounds (Ag equivalent)	ton	0.1	0	-0.1	0.1	0	-0.1	0.1
151	1,3-Dioxolane	ton	4.3	0	-4.3	4.3	0	-4.3	4.3
181	Dichlorobenzene	ton	3.2	1.5	-1.7	3.2	3.2	0	3.2
186	Dichloromethane (also known as methylene dchloride)	ton	299.8	548.0	+248.2	299.8	532.6	+232.8	299.8
232	N, N-Dimethylformamide	ton	43.9	382.8	+338.9	43.9	517.1	+473.2	43.9
240	Styrene	ton	13.5	17.0	+3.5	13.5	41.0	+27.5	13.5
275	Sodium dodecyl sulfate	ton	2.2	0.9	-1.3	2.2	0	-2.2	2.2
277	Triethylamine	ton	0	0	0	0	0	0	0
300	Toluene	ton	188.9	326.4	+137.5	188.9	461.5	+272.6	188.9
353	Diethyl phthalate	ton	0	0	0	0	0	0	0
392	n-Hexane	ton	74.5	2.2	-72.3	74.5	33.8	-40.7	74.5
395	Water-soluble salts of peroxodisulfuric acid	ton	158.6	1.5	-157.1	158.6	0.9	-157.7	158.6
412	Manganese and its compounds (Mn equivalent)	ton	0	0	0	0	0.1	+0.1	0
415	Methacrylic acid	ton	1.8	1.6	-0.2	1.8	4.0	+2.2	1.8
420	Methyl methacrylate	ton	0.3	0	-0.3	0.3	0	-0.3	0.3
438	Methylnaphthalene	ton	0	0	0	0	0	0	0
455	Morpholine	ton	25.8	51.2	+25.4	25.8	59.3	+33.5	25.8
461	Triphenyl Phosphate	ton	5.6	0	-5.6	5.6	0	-5.6	5.6

(2) The weight of substances emission controlled by Pollution Release and Transfer Register (PRTR) system

%The targets were determined based on the results of FY2015.

 $\% These \ {\tt PRTR}$ data were gathered from Japan sites that included main bases of consumables production.

%The unit "ton" means metric ton.