The next-generation model that surpasses the CA-210
For high-speed, high-accuracy measurements of LED-backlit LCD TVs

LED television

Smartphone

Uniformity

Display Color Analyzer
CA-310
Support for LED backlights
Our previous Display Color Analyzer CA-210 could adjust the white balance of LED-backlit LCD TVs to $\Delta xy=0.010$, but the new Display Color Analyzer CA-310 enables adjustment to $\Delta xy=0.003$ so colors are even more true, as can be seen below.

White balance adjustment of LED-backlit LCD TVs

<table>
<thead>
<tr>
<th>CA-310 adjustment results</th>
<th>CA-210 adjustment results</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta xy=0.010$</td>
<td></td>
</tr>
<tr>
<td>$\Delta xy=0.003$</td>
<td>Target color $\Delta xy=0.000$</td>
</tr>
<tr>
<td>$\Delta xy=0.003$</td>
<td></td>
</tr>
<tr>
<td>$\Delta xy=0.010$</td>
<td></td>
</tr>
</tbody>
</table>

White balance adjustment has advanced even further!

Enables high-speed measurement of even extremely low luminances down to 0.005 cd/m2

Sensor noise reduction technology has been used to enable measurements even in the extremely low luminance region around 0.005 cd/m2 at speeds as fast as 4 times per second. This allows the high-speed high-accuracy measurement essential for manufacturing high-grade displays. In addition, at luminances higher than 2.0 cd/m2, 20 measurements per second are possible.

Reduces errors due to LED emission distribution variations to less than 1/3.

Variations in the emission distribution of LED backlights result in individual differences of about 10nm in peak intensity wavelength. If LED-backlit LCD TVs with such individual differences are adjusted using conventional color analyzers, color differences of close to 0.010 on the xy chromaticity diagram may occur. But the CA-310 has sensor sensitivities that more closely match the CIE 1931 color-matching functions, enabling the color difference in the same case to be reduced to around 0.003, suppressing errors to less than 1/3.

Errors (differences from true values) for white LEDs with different peak wavelengths when measured using CA-310. User calibration to standard LED performed.
PC Software for Color Analyzer CA-SDK (Standard accessory)

Standard accessory SDK helps create software easily according to needs. Sample software is bundled; you can start data collection easily.

Required system
- **OS**: Windows® XP, Vista, 7

Windows® and Excel® are a trademark of Microsoft Corporation in the USA and other countries.

System Diagram

- **Multi Probe (Optional)**
- **Standard Hood for CA-210/310 CA-H10 (Standard)**
- **Small Hood for CA-210/310 CA-HS10 (Standard)**
- **Standard Lens Cap for CA-210/310 CA-H11 (Standard)**
- **Small Lens Cap for CA-210/310 CA-HS11 (Standard)**
- **CA-310**
- **4-Probe Expansion Board CA-B15 (Optional)**
- **USB Cable IF-A18 (Optional)**
- **PC Software for Color Analyzer CA-SDK (Standard)**
- **AC Power Cord (Optional)**
- **PC (Commercially available)**
- **PC-AT compatible**

Probe variations

This table is based on the most popular method for controlling emission intensity for each display type.

* Measurements of displays using certain control methods are not possible. For details of measurement compatibility, contact your nearest Konica Minolta representative.

Examples for which measurement is not possible:
- Displays which use PWM, etc. for control of emission intensity.
- Displays with backlights which emit intermittently.
- Displays which write black for each frame, etc.

Applicability for different display types

<table>
<thead>
<tr>
<th>Display Type</th>
<th>Active Matrix Driven</th>
<th>Passive Matrix Driven</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmissive / semi-transmissive LCD</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>OLED</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>PDP</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>FED</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Rear Screen Projector</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>LCD</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>DLP</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>CRT</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

○ Recommended
△ Measurement possible with restrictions, but probes marked with ○ are recommended
× Measurement not possible

(LEd Flicker Measuring Probes are unsuitable for measurements of CRTs.)
Specifications

Model
- CA-310 (LED Universal Measuring 07/Probe)
- CA-310 (LED Universal Measuring 10/Probe)

Detector
- Silicon photo cell

Measurement area
- 810 mm

Acceptance angle
- ±2.5°

Measurement distance
- 30±5 mm

Display range
- 0.000 to 1000 cd/m²

Chromatcity
- Displayed in 4 or 3-digit value (Can be chosen)

Measurement range
- 0.0500 to 1000 cd/m²

Accuracy
- ±0.5 dB (Flicker frequency: 30 Hz AC/DC 4% (-40 dB) sine wave)

Repeatability(2σ)
- ±0.0030 cd/m²

Detector
- Silicon photo cell

**Probe Ø49×208 mm / 530 g
- Ø49×236 mm / 550 g
- Ø49×208 mm / 530 g
- Ø49×236 mm / 550 g

Accuracy
- ±1% ±0.0030 cd/m²

Flicker
- JEITA

Input voltage range
- 100-240V

Operation temperature/humidity range
- Temperature: 10 to 28°C ; relative humidity 70% or less with no condensation

Luminance change
- ±2% of reading for white

Measurement distance
- 30±5 mm 30±10 mm 30±5 mm 30±10 mm

Temperature/humidity range
- 0 to 28°C : relative humidity 70% or less with no condensation

Storage temperature/humidity range
- 28 to 40°C : relative humidity 40% or less with no condensation

Flicker (Contrast method)
- 4(3.5) times/sec.

Accuracy
- ±0.5 dB (Flicker frequency: 30 Hz AC/DC 1.2% (-50 dB) sine wave)

Repeatability
- ±0.0040 cd/m²

Display
- Digital xyLV, RGB analyze, XYZ, u’v’L V

LED
- 16 characters by 2 lines (with backlight)

SYNC mode
- NTSC, PAL, EXT, UNIV, INT

Screen visibility
- Vertical synchronization frequency: 40 to 200 Hz

Chemical management, calibration, and service
- Subject to change without notice.

LED Universal Measuring ≤27 Probe

Flicker Measuring ≤10 Probe

SAFETY PRECAUTIONS

For correct use and your safety, be sure to read the Instruction Manual before using the instrument.

- Always connect the instrument to the specified power supply voltage. Improper connection may cause a fire or electric shock.

KONICA MINOLTA, INC.

Konica Minolta Sensing Americas, Inc.

New Jersey, U.S.A.

Onaka, Japan

Name, Address, Telephone number are subject to change without notice. For the latest contact information, please refer to the KONICA MINOLTA Worldwide Web site.

©2013 KONICA MINOLTA, INC.