# **分光辐射亮度计** CS-3000HDR/CS-3000/CS-2000Plus



使用前,请务必阅读。



# 有关安全的图示

为了预防错误操作本仪器导致的事故,本书中记载的警告和注意事项带有以下标志。

永示记载着有关安全的警告或注意事项的文字。 请仔细阅读记载的文字,正确使用本仪器。



表示禁止的行为。 切勿实施。



表示对行为的指示。 请务必遵照指示进行操作。



表示对行为的指示。 请务必将电源插头从插座上拔下。



表示禁止的行为。 切勿拆解。

- 🗸 🦷 该符号表示交流电 (AC)。
- ■ 该符号表示直流电 (DC)。

该符号表示电击防护类型为 Class II。

# 有关本书的注意事项

- 严禁未经允许擅自转载本书的部分或全部内容。
- 本书的内容将来可能不经事先预告而进行变更。
- 本书的内容在制作时力求完善,但若发现可疑之处或错误、缺漏等情况,请联系您购买本产品的门店或"**服务指南"**中记载的咨询窗口。
- 无论是否存在上述情况,本公司对于运用本仪器所造成的结果概不负责,敬请谅解。

# 安全方面的警告和注意事项

使用本仪器时,请务必遵守以下事项,正确使用。此外,请在仔细阅读使用说明书后,将其 妥善保管在随时可以翻看的地方。

| ▲ 荀        |                                                                                                                                 |
|------------|---------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                 |
| $\bigcirc$ | 请勿在存在引火性、可燃性蒸汽(汽油等)的场所使用。<br>否则可能导致火灾。                                                                                          |
| $\bigcirc$ | 请勿在从本仪器通风口进入的灰尘堆积在内部的状态下使用。否则可能导致火灾。<br>关于定期检查,请咨询" <b>服务指南</b> "中记载的咨询窗口。                                                      |
|            | AC 适配器请务必使用本公司指定的标准配件 AC 适配器(AC-A312G),并连接至 100 ~ 240V ~ (50Hz/60Hz)的室内配线插座中使用。如果使用非指定的适配器,或者连接至其他电压,可能导致本仪器或 AC 适配器破损或引起火灾、触电。 |
| 0          | 请将电源插头确实插入至根部。如果未充分插入,可能导致火灾或触电。                                                                                                |
| 8.0        | 长时间不使用本仪器时,请将 AC 适配器的电源线从插座上拔下。否则电源线插入插座的部分可能沾染灰尘或水滴,导致火灾。电源线插入插座的部分沾有灰尘或水滴时,请清洁后再使用。                                           |
| 0          | 拔下 AC 适配器的电源线时,请务必握住电源插头将其拔下。如果拉拽电源线,<br>可能导致电源线受损,引发火灾或触电。此外,请勿用湿手插拔电源线插头。<br>否则可能导致触电。                                        |
| $\bigcirc$ | 请勿强行弯曲、扭曲、拉拽电源线。请勿在电源线上放置重物,或损伤、加工电<br>源线。否则可能导致电源线受损,引发火灾或触电。                                                                  |
|            | 请勿拆解或改造本仪器或 AC 适配器。否则可能导致火灾或触电。                                                                                                 |
| $\bigcirc$ | 请勿令液体滴落在本仪器上,或者令金属制品掉入本仪器中。否则可能导致火灾或触电。万一不慎令液体滴落在本仪器上,或者令金属制品掉入本仪器中,请立即切断电源,将AC适配器从插座上拔下,并咨询" <b>服务指南"</b> 中记载的咨询窗口。            |
| $\bigcirc$ | 万一本仪器或 AC 适配器出现破损、冒烟或异味,请勿继续使用。否则可能导致<br>火灾。如果出现冒烟、异味或破损,请立即切断电源,将 AC 适配器从插座上拔下,<br>并咨询" <b>服务指南"</b> 中记载的咨询窗口。                 |
| $\bigcirc$ | 切勿透过本仪器的取景器观察太阳或强光。否则可能导致失明。                                                                                                    |

| <u></u> ;  | 上意 (操作不当时,可能发生令用户受伤的危险的情况以及可能仅发生物理 损坏的情况)                       |
|------------|-----------------------------------------------------------------|
| 8.0        | 使用 AC 适配器时,请确保仪器附近有插座,并且可以容易地插拔 AC 适配器的<br>电源线插头。               |
| $\bigcirc$ | 请勿放置在摇晃的桌台上或者倾斜处等不稳定的场所。否则可能发生掉落、翻倒,<br>导致人员受伤。此外,搬运时请注意确保不会掉落。 |
| $\bigcirc$ | 请勿一边观察取景器一边移动。否则可能导致翻倒等事故。                                      |
| 0          | 使用可选配件 ND 滤镜、近摄镜头时,请充分小心。可能出现 ND 滤镜、近摄镜<br>头碎裂,导致人员受伤的情况。       |
| 0          | 请注意避免手被存储箱(可选配件)的开闭部分夹住。<br>否则可能导致受伤。                           |
| $\bigcirc$ | 请勿堵住本产品的通风口。<br>否则可能导致火灾。                                       |
| 8-0        | 保养时,请将电源插头从插座上拔下。<br>否则可能导致触电。                                  |

前言

本仪器为可以进行覆盖超低亮度范围的高精度亮度、色度测量的分光辐射亮度计。 请仔细阅读本文后再使用。

#### 关于购买时的包装材料

请妥善保管购买时的包装材料(纸箱、缓冲材料、塑料袋)。 本仪器为精密测量仪。因在本公司进行维护等而需要进行运输时,为了尽量避免冲击和 震动,请使用购买时的包装材料。 万一包装材料出现丢失或破损,请咨询"**服务指南"**中记载的咨询窗口。

## 使用注意事项

请务必正确使用本仪器。如果没有按使用说明书中记载的方法使用本仪器,可能会导致人身 伤害、触电或损坏仪器本身等。

## <u>关于使用环境</u>

- 本仪器标配的 AC 适配器(AC-A312G)采用室内专用设计。请勿在室外使用。
- 本仪器由精密电子元件构成,切勿拆解。
- 请在额定电源(100 ~ 240V ~)下使用。并且,请将 AC 电源线连接至 100 ~ 240V ~ (50/60Hz)的插座中使用。请在额定电压 ±10% 的范围内使用。
- 本仪器属于污染等级2的产品(主要在制造现场、实验室、仓库或同等场所中使用的设备)。
   请在无金属性尘埃、无凝露可能性的环境中使用。
- 本仪器属于过电压类别1的产品(连接至采取措施将过电压限制在适当低水平的电路的设备)。
- 本仪器及 AC 适配器属于 EMC Class B 设备。如果在家庭环境中使用本仪器及该 AC 适配器,可能引起电波干扰。此时,可能需要用户采取适当的对策。
- 在水或金属类物质进入内部的状态下使用本仪器非常危险,因此请注意防止异物进入。
- 如果在受到阳光直射的场所或者供暖器具附近使用,本仪器的温度可能较气温出现大幅 升高,引发故障。请勿在上述场所使用。此外,请在通风良好的场所使用主机,并确保 散热用通气孔未被堵塞。
- 请避免急剧的温度变化,防止出现凝露。
- 请避免在灰尘极多的场所、湿度极大的场所使用。
- 请将本产品安装在满足操作温度/湿度范围[5~35℃相对湿度80%以下(35℃时)/ 无凝露](CS-2000Plus)、[5~30℃相对湿度80%以下(30℃时)/无凝露](CS-3000HDR /CS-3000)的场所使用。如果在超过操作温度/湿度范围的环境下使用,可能无法正常 发挥性能。
- 请勿在海拔高于 2000m 的场所使用本仪器。
- 请勿令 AC 适配器的输出插头短路。否则可能导致火灾或触电。
- 请勿在单个插座上接用多个电器。此外,请勿用布等物品覆盖或包裹正在使用的 AC 适配器。否则可能导致触电、火灾。
- 从仪器上取下 AC 适配器时,请先从插座上拔下电源线,然后再拔下输出插头。

## <u>关于本仪器</u>

- 请勿对本仪器施加强烈的震动或冲击。
- 请勿对附带的 AC 适配器和 USB 数据线的电线进行拉拽、强行弯曲或者施加较强的力。 否则可能导致断线。
- 请尽量连接在噪声较少的电源上使用。
- 请勿测量太阳光等超出两侧范围的高亮度光源。否则可能损伤本仪器的光学系统。
- 发现故障或异常时,请立即切断电源,拔下AC适配器的插头,然后查阅"故障排查"P.98。
- 万一发生故障时,请勿自行拆解,请咨询"服务指南"中记载的咨询窗口。
- 测量目标物的亮度在 2cd/m<sup>2</sup> 以下(测量角度 1°)时,在将电源开关切为 ON 后,至少 需要预热 20 分钟。
- 不使用 RS-232C 通信时,请务必盖上连接器部分的盖子。否则可能因静电影响而发生误动作。

## 关于物镜以及 ND 滤镜、近摄镜头、照度适配器(可选配件)

- 进行测量时,请确认物镜以及 ND 滤镜、近摄镜头、照度适配器的表面没有脏污。如果存在灰尘、尘埃、手垢或清洁时的擦拭痕迹,可能导致无法正确测量。
- 请勿用手触摸物镜以及 ND 滤镜、近摄镜头、照度适配器的表面。
- 如果在高湿度环境下施加急剧的温度变化,物镜以及 ND 滤镜、近摄镜头、照度适配器 可能起雾,导致无法正确测量,敬请注意。
- 在 A 光源等红外输出功率较大的光源下观察 10 万 lx 左右的光时,照度适配器和主机可能大幅升温,存在损伤风险,敬请注意。

## 保管方法

## <u>主机</u>

- 如果保管在受到阳光直射的场所或者供暖器具附近,本仪器的温度可能较气温出现大幅 升高,引发故障。请勿保管在上述场所。
- 本仪器的保管温湿度范围为 [0 ~ 35℃ 相对湿度 80% 以下(30℃时)/无凝露 ]。保管在高温、高湿场所时,可能无法正常发挥性能,因此建议与干燥剂一并保管在接近常温的场所。
- 保管时请注意确保不会凝露。此外,移动至保管场所时,请注意避免急剧的温度变化, 防止凝露。
- 保管时,请放入出货时的包装箱或者可选配件存储箱(CS-A30)中,保管在安全的场所。

## 物镜

• 保管时,请在物镜上盖上标准配件镜头盖。

## 保养方法

## <u>主机</u>

万一本仪器沾有脏污时,请使用柔软的干布擦拭干净。请勿使用有机溶剂(挥发油、稀释剂)或其他化学药品进行清洁。本仪器上的脏污无法去除时,请咨询"服务指南"上记载的咨询窗口。

## 物镜

 万一有脏污或灰尘附着时,请使用柔软的干布或镜头清洁纸擦拭干净。请勿使用有机溶剂(挥发油、稀释剂)或其他化学药品进行清洁。脏污难以去除时,请咨询"服务指南" 上记载的咨询窗口。

## 运输时的注意事项

- 运输本仪器时,为了尽量避免冲击和震动,请使用购买时的包装材料。
- 退回接受售后服务时,请将主机与配件装入同一包装材料中,一并退回。

## 维护检查

为了维持本仪器的测量精度,建议以每年1次左右的频率进行定期检查。关于检查的详细信息,请咨询"服务指南"中记载的咨询窗口。

# 废弃方法

• 废弃主机、配件及包装材料时,请遵守当地的有关规定。

# <u>目录</u>

| 有关安全的图示                       | ii         |
|-------------------------------|------------|
| 前言                            | 3          |
| 使用注意事项                        | 3          |
| 关于使用环境                        | 3          |
| 关于本仪器                         | 4          |
| 关于物镜以及 ND 滤镜、近摄镜头、<br>器(可选配件) | 、照度适配<br>4 |
| 保管方法                          | 5          |
| 主机                            | 5          |
| 物镜                            | 5          |
| 保养方法                          | 5          |
| 主机                            | 5          |
| 物镜                            | 5          |
| 运输时的注意事项                      | 5          |
| 维护检查                          | 5          |
| 废弃方法                          | 5          |
| 标准配件                          | 8          |
| 可选配件                          | 9          |
| 系统构成图                         | 11         |
| 各部分的名称及作用                     | 12         |
| 各部分的名称                        | 12         |
| 各部分的主要作用                      | 13         |
| 按键面板                          | 14         |
| 各按键的主要作用                      | 14         |
| 屈光度调节方法                       | 15         |
| 液晶显示屏                         | 16         |
| MEAS (测量值显示) 画面               | 16         |
| MENU 画面                       | 17         |

# 安装篇

| 关于安装                | 20 |
|---------------------|----|
| AC 适配器的连接           | 21 |
| 连接步骤                | 22 |
| 电源的 ON ( ) /OFF (○) | 23 |
| 电源开关 ON             | 23 |
| 电源开关 OFF            | 24 |

## 设定篇

| 测量速度的选择                                     | 26    |
|---------------------------------------------|-------|
| 同步方法的设定                                     | 31    |
| <b>关于发光频率检测和设定功能</b> (仅<br>3000HDR、CS-3000) | 限 CS- |
| 垂直同步信号的输入方法                                 | 36    |
| 同步帧的选择                                      | 38    |
| 测量角度的选择                                     | 40    |
| 颜色匹配函数的选择                                   | 42    |
| 显示格式的选择                                     | 44    |
| 分光辐射亮度计负值的处理设定                              | 46    |
| 色空间模式的选择                                    | 48    |
| 使用近摄镜头时                                     | 50    |
| 使用 ND 滤镜时                                   | 52    |
| 使用照度适配器时                                    | 54    |
| 测量期间打开 / 关闭背光灯                              | 56    |
| RS-232C 通信用波特率的选择                           | 58    |
| RS-232C 供电的设定                               | 60    |
| 内部时钟的设定                                     | 62    |
| 定期校准提醒设定                                    | 64    |
| 校准                                          | 66    |
| 关于校准通道                                      | 66    |
| 主机信息的确认                                     | 68    |

# 测量篇

| 测量     | 70 |
|--------|----|
| 测量值的保存 | 73 |
| 保存值的确认 | 76 |
| 保存值的删除 | 77 |

| 通信篇                        |    |
|----------------------------|----|
| 与电脑的连接                     | 82 |
| 使用 USB 数据线时                | 82 |
| 使用 RS-232C 串口线时            | 83 |
| 使用 RS-232C Bluetooth 转换接头时 | 84 |
| 远程模式                       | 85 |

# 解说篇

| 测量原理                                  | 88  |
|---------------------------------------|-----|
| 传感器部分                                 | 88  |
| 关于暗电流测量                               | 89  |
| "暗电流测量"模式                             | 89  |
| 进行"暗电流测量"                             | 90  |
| 关于 L <sub>v</sub> T <sub>cp</sub> △uv | 91  |
| 关于特征波长和激发纯度                           | 92  |
| 尺寸图                                   | 93  |
| 关于错误信息                                | 96  |
| 关于提示信息                                | 97  |
| 故障排查                                  | 98  |
| 设定初始化                                 | 101 |
| 主要规格                                  | 102 |

# 标准配件

本仪器配有标准配件和可选配件。 **备注** 7 部分情况下,产品形状可能与图纸有所差异。

### 镜头盖 CS-A31

• 不使用本仪器时,请装上镜头盖,以保护镜头。



### USB 数据线 (2m) CS-A32

• 在连接本仪器与电脑进行通信时使用。



## AC 适配器 AC-A312G (ATS036T-A120)

从AC电源向本仪器供电。
 输入: 100 ~ 240V ~ 50/60Hz 1A Max
 输出: 12V ---- 3A
 插头规格 ⊕ ● ● 内侧负极

### 对焦环锁定螺丝 CS-A38

- 用于固定对焦环,防止其意外移动。
  - 请勿使用非附带的螺丝。万一发生丢失或破损, 请重新购买 CS-A38。
  - 出厂时已使用该螺丝固定对焦环。需要移动对焦环时,请旋松该螺丝。
  - 将 CS-3000HDR/CS-3000/CS-2000Plus 放入存储箱(可选配件)中时,请将该螺丝调整至 不会碰到包装材料的位置,或者取下该螺丝。

• 为了运输而降 CS-3000HDR/CS-3000/CS-2000Plus 放入包装箱中时,请将该螺丝调整至不会碰到包装材料的位置,或者取下该螺丝。

## 校准证书

**CS-S30** 

## 分光辐射计用软件



- 通过该软件,可以在电脑中控制本仪器,并 进行各种数据管理。
- https://www.konicaminolta.com/instruments/ download/software/display/index.html 您可从以上链接下载并使用。





# 可选配件

## ND 目镜滤光镜 CS-A1

 测量高亮度的目标物时,减轻观察取景器时的刺 眼感。测量高亮度的目标物时,请务必安装在取 景器前使用。

## ND 目镜滤光镜 (高亮度用) CS-A39

 尤其 CS-3000HDR 的高亮度侧测量范围是 CS-3000/CS-2000Plus 的20倍,因此在测量高 亮度的目标物时,请务必安装在取景器前使用。

### ND 滤镜(1/10) CS-A40 ND 滤镜(1/100) CS-A41

• 测量高亮度的目标物时,安装在物镜前使用。







## ND 滤镜用校准证书

• ND 滤 镜 (1/10) CS-A40、ND 滤 镜 (1/100) CS-A41 可以附带校准证书。

## 近摄镜头 CS-A42

• 测量微小的目标物时,安装在物镜前使用。



## CCD 取景适配器 CS-A36

• 使用C卡口的工业相机时,安装在相机与取景器 之间。



## 照度适配器 CS-A43

• 测量照度时,安装在物镜前使用。



## 白色校准板 CS-A5(不含数据) 白色校准板 CS-A5(含数据) 白色校准板 CS-A5(含数据和校准证书)

• 在测量物体颜色时使用。分为三种类型,分别是不含数值型、含数值型、含数值型、含数值和校准证书型。



## 三脚架 CS-A3

### 云台 CS-A4

• 请在安装本仪器时使用。



## 存储箱 CS-A30

• 在收纳或用手搬运本仪器和配件时使用的箱子。 切勿用作运输用箱。



## RS-232C 串口线(5m) IF-A37 RS-232C 串口线(10m)IF-A38

• 用于将本仪器连接至电脑的 RS-232C 接口。



系统构成图



# <u>各部分的名称及作用</u>

# 各部分的名称

## • CS-3000HDR/CS-3000/CS-2000Plus



# 各部分的主要作用

| ① 电源开关        | 打开(  侧)/ 关闭(O侧)本仪器的电源。                                                                 | (P.23)         |
|---------------|----------------------------------------------------------------------------------------|----------------|
| ② AC 适配器输入端子  | 连接附带的 AC 适配器。                                                                          | (P.21)         |
| ③ USB 连接器     | 连接至电脑时用于连接 USB 数据线。                                                                    | (P.82)         |
| ④ RS-232C 连接器 | 连接至电脑时用于连接 RS-232C 串口线。                                                                | (P.83)         |
| ⑤ 测量角度切换旋钮    | 将测量角度切换至 1°、0.2°或 0.1°。<br>仅限 CS-2000Plus。CS-3000HDR/CS-3000 会依照在 M<br>画面中的选择电动切换测量角度。 | (P.40)<br>MENU |
| ⑥ 物镜          | 将该部分对准测量目标物,进行测量。                                                                      | (P.71)         |
| ⑦对焦环          | 在测量时,调节物镜的焦点。                                                                          | (P.71)         |
| ⑧焦距刻度         | 表示焦点位置的刻度。                                                                             | (P.71)         |
| ⑨ 液晶显示屏       | 显示测量画面、菜单画面等各种画面。                                                                      | (P.16)         |
| ⑩ 按键面板        | 通过各按键操作本仪器。                                                                            | (P.14)         |
| ① 测量按钮        | 进行测量。                                                                                  | (P.71)         |
| ⑫ 取景器         | 观察测量目标物。 (P.1                                                                          | 5、70)          |
| ⑬ 屈光度调节环      | 调节屈光度。 (P.1                                                                            | 5、70)          |
| ⑭ 光圈          | 表示测量区域。(P.1)<br>黑色圆形的大小会随测量角度而变化。                                                      | 5、70)          |
|               | 测量角度 1°                 测量角度 0.2°                 测量角度 1°                              | E 0.1°         |
| ⑮ 固定用螺丝孔      | 在将本仪器安装到三脚架或夹具上时使用。                                                                    | (P.20)         |

⑥ 垂直同步信号输入端子进行外同步测量时,连接用于输入垂直同步信号的 电缆。

# 按键面板



# 各按键的主要作用

| <ul> <li>② SETTING INFO 键 在处于测量值显示画面时按下,则显示当前的 MEAS、OPTION、SETUP 的设定。(P.71)</li> <li>③ COLOR MODE 键 在处于测量值显示画面时按下,则色空间模式按照L<sub>x</sub>Xy → L<sub>y</sub>U<sup>'</sup>V' → L<sub>y</sub>T<sub>cp</sub>Δuv → XYZ → 特征波长和激发纯度→光谱图 → L<sub>y</sub>Xy → 的顺序切换。(P.48)</li> <li>④ ESC 键 在处于 MENU 画面时按下,则中止设定,且画面返回测量值显示 画面。在输入数值或进行各种设定时按下,则中止设定。在连续 测量过程中按下,则中止测量。</li> <li>⑤ BACKLIGHT 键 切换液晶显示屏的背光灯的设定。按下 BACKLIGHT 键,则按照亮 灯(明)→亮灯(暗)→熄灭→亮灯(明)→的顺序切换。</li> <li>⑥ MEMORY 键 在处于测量值显示画面时按下,则测量数据被保存到存储器中。(P.73)</li> <li>⑦ ①、 ②键 在处于显示各种数据的画面时按下,则保存值编号、校准通道等 将被更改。在输入数值或进行各种设定时按下,则光标位置会上下移动,或者数值或设定项目被更改。</li> <li>⑧ ● ENTER 键 在输入数值或进行各种设定时按下,则光标位置会左右移动。</li> </ul> | ① MENU 键         | 在处于测量值显示画面时按下,则画面切换为 MENU 画面。<br>(P.17)                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>③ COLOR MODE 键 在处于测量值显示画面时按下,则色空间模式按照L,xy→L,u'v'→L,T<sub>cp</sub>Δuv→XYZ→特征波长和激发纯度→光谱图→L,xy→的顺序切换。(P.48)</li> <li>④ ESC 键 在处于 MENU 画面时按下,则中止设定,目画面返回测量值显示画面。在输入数值或进行各种设定时按下,则中止设定。在连续测量过程中按下,则中止测量。</li> <li>⑤ BACKLIGHT 键 切换液晶显示屏的背光灯的设定。按下 BACKLIGHT 键,则按照亮灯(明)→亮灯(暗)→熄灭→亮灯(明)→的顺序切换。</li> <li>⑥ MEMORY 键 在处于测量值显示画面时按下,则测量数据被保存到存储器中。(P.73)</li> <li>⑦ ① ① ① ↓</li> <li>⑦ ② ① ② ↓ ② 键 在处于显示各种数据的画面时按下,则光标位置会上下移动,或者数值或进行各种设定时按下,则光标位置会上下移动,或者数值或进行各种设定时按下,则光标位置会左右移动。</li> <li>④ ENTER 键 在确定通过 ③ ○ ○ ○ △ ○ △ ○ △ ○ △ ○ △ ○ ○ △ ○ ○ ○ ○</li></ul>                                                                                                      | ② SETTING INFO 键 | 在处于测量值显示画面时按下,则显示当前的 MEAS、OPTION、<br>SETUP 的设定。(P.71)                                                                                                                 |
| <ul> <li>④ ESC 键 在处于 MENU 画面时按下,则中止设定,且画面返回测量值显示 画面。在输入数值或进行各种设定时按下,则中止设定。在连续 测量过程中按下,则中止测量。</li> <li>③ BACKLIGHT 键 切换液晶显示屏的背光灯的设定。按下 BACKLIGHT 键,则按照亮 灯(明)→亮灯(暗)→熄灭→亮灯(明)→的顺序切换。</li> <li>⑥ MEMORY 键 在处于测量值显示画面时按下,则测量数据被保存到存储器中。 (P.73)</li> <li>⑦ ▲、 ↓ </li> <li>⑦ ▲、 ↓ </li> <li>征处于显示各种数据的画面时按下,则保存值编号、校准通道等 将被更改。在输入数值或进行各种设定时按下,则光标位置会上 下移动,或者数值或设定项目被更改。</li> <li>⑧ ENTER 键 在确定通过▲ ♀ </li> </ul>                                                                                                                                                                                                                                                          | ③ COLOR MODE 键   | 在处于测量值显示画面时按下,则色空间模式按照<br>L <sub>v</sub> xy→L <sub>v</sub> u <sup>'</sup> v'→L <sub>v</sub> T <sub>cp</sub> Δuv→XYZ→特征波长和激发纯度→光谱图<br>→L <sub>v</sub> xy→的顺序切换。 (P.48) |
| <ul> <li>③ BACKLIGHT 键 切换液晶显示屏的背光灯的设定。按下 BACKLIGHT 键,则按照亮灯(明)→亮灯(暗)→熄灭→亮灯(明)→的顺序切换。</li> <li>④ MEMORY 键 在处于测量值显示画面时按下,则测量数据被保存到存储器中。(P.73)</li> <li>⑦ ▲、 ♥键 在处于显示各种数据的画面时按下,则保存值编号、校准通道等将被更改。在输入数值或进行各种设定时按下,则光标位置会上下移动,或者数值或设定项目被更改。</li> <li>④ ▲、 ♥键 在输入数值或进行各种设定时按下,则光标位置会左右移动。</li> <li>④ ENTER 键 在确定通过▲ ♀ ● 选择的内容时按下。</li> </ul>                                                                                                                                                                                                                                                                                                                             | ④ ESC 键          | 在处于 MENU 画面时按下,则中止设定,且画面返回测量值显示<br>画面。在输入数值或进行各种设定时按下,则中止设定。在连续<br>测量过程中按下,则中止测量。                                                                                     |
| <ul> <li>⑥ MEMORY 键 在处于测量值显示画面时按下,则测量数据被保存到存储器中。(P.73)</li> <li>⑦ ▲、 ♥键 在处于显示各种数据的画面时按下,则保存值编号、校准通道等将被更改。在输入数值或进行各种设定时按下,则光标位置会上下移动,或者数值或设定项目被更改。</li> <li>⑧ ▲、 ▶键 在输入数值或进行各种设定时按下,则光标位置会左右移动。</li> <li>⑨ ENTER 键 在确定通过▲ ♥ ● ● 选择的内容时按下。</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                               | ⑤ BACKLIGHT 键    | 切换液晶显示屏的背光灯的设定。按下 BACKLIGHT 键,则按照亮<br>灯(明)→亮灯(暗)→熄灭→亮灯(明)→的顺序切换。                                                                                                      |
| <ul> <li>⑦ ▲、 ♥键 在处于显示各种数据的画面时按下,则保存值编号、校准通道等 将被更改。在输入数值或进行各种设定时按下,则光标位置会上 下移动,或者数值或设定项目被更改。</li> <li>⑧ ▲、 ♥键 在输入数值或进行各种设定时按下,则光标位置会左右移动。</li> <li>⑨ ENTER 键 在确定通过 ▲ ♀ ● 选择的内容时按下。</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ⑥ MEMORY 键       | 在处于测量值显示画面时按下,则测量数据被保存到存储器中。<br>(P.73)                                                                                                                                |
| <ul> <li>⑧ &lt;</li> <li>● ENTER 键</li> <li>在输入数值或进行各种设定时按下,则光标位置会左右移动。</li> <li>④ ENTER 键</li> <li>在确定通过</li> <li>● Q </li> <li>● 选择的内容时按下。</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ⑦ 🔷、 🔽键          | 在处于显示各种数据的画面时按下,则保存值编号、校准通道等<br>将被更改。在输入数值或进行各种设定时按下,则光标位置会上<br>下移动,或者数值或设定项目被更改。                                                                                     |
| ⑨ ENTER 键 在确定通过 ▲ <b>↓</b> ◆ ◆ ◆ 选择的内容时按下。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ⑧ 🕄 、 🕻 键        | 在输入数值或进行各种设定时按下,则光标位置会左右移动。                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ⑨ ENTER 键        | 在确定通过❹♀♀♀选择的内容时按下。                                                                                                                                                    |

# 屈光度调节方法

转动取景器的屈光度调节环,调节屈光度。



通过取景器观察测量目标物时,请确保光圈(表示测量区域的黑色圆形)的A和B部分清晰可见。 将测量角度设为1°,在对焦模糊的状态(光圈周围的测量目标物的影像隐约可见的状态)下调节会更容易。

进行测量前,请务必进行屈光度调节。请由进行测量的人员进行屈光度调节。如果未在对焦前调节屈光度,即使以为已正确对焦,实际上也并未对焦,因此可能无法获得正确的测量值。此外,未正确调节屈光度时,根据观察角度的不同,可能会出现光圈看起来摇晃的情况。

\*可能会在取景器内部看到细小的黑点或条纹等,但 对测量结果能并无任何影响。



# 液晶显示屏 MEAS (测量值显示) 画面



### MENU 画面

在处于测量值显示画面时按下**MENU**键,则画面切换为 MENU 画面。

#### $\Box$ MEAS

进行测量速度、同步方式的设定。 (P.26、31)

### MENU

#### D MEAS

MEMORY

D OPTION

- □ SETUP
- DARK MEASUREMENT
- INFORMATION

#### 

确认或删除已保存的测量值及其测量条件。(P.74、77)

#### 

进行近摄镜头、ND 滤镜、照度适配器和 校准通道的设定。 (P.50、52、54、66)

#### □ SETUP

进行颜色匹配函数、背光灯、显示格式、 通信的设定。 (P.42、56、44、58)

#### 

进行暗电流测量。(P.89)

#### 

显示产品名称、产品序列号、主机版本等 测量仪信息。(P.68)



# 关于安装

将本仪器安装到三脚架或夹具上时,可以使用仪器底部的螺丝孔来固定仪器。 螺丝孔有以下 2 种。

三脚架螺丝孔: 在安装到三脚架上时使用。螺丝为三脚架螺丝 3/8inch、深 10.5mm。 [注意]三脚架螺丝孔与大型相机三脚架使用的 3/8inch 直径的螺丝相匹配。 无法使用 1/4inch 尺寸的螺丝固定。

ISO 螺丝孔: 在安装到夹具上时使用。螺丝为 ISO 螺丝 5mm、深 6.5mm。



其他详细尺寸请参阅 P.93、94、95。

# AC 适配器的连接

本仪器的电源使用附带的 AC 适配器。



安装篇



# 连接步骤

**1.**确认本仪器的电源开关处于 OFF (〇侧)。



# 2. 将 AC 适配器插头连接至主机的 AC 适配器输入端子。



# 3. 将 AC 适配器插入插座(100-240V ~、50Hz/60Hz)。

AC 适配器的插头及插座请确认插到底。



# <u> 电源的 ON (|) /OFF (○)</u>

为了按以下条件进行高精度测量,至少需要预热 20 分钟。此外,只要关闭过电源开关,即 便时间再短,在再次开启时请同样至少预热 20 分钟。

- ① 测量目标物为低亮度光源时:标准为 2856K (标准光源 A),
  - 2cd/m<sup>2</sup>以下 (测量角度 1°)
  - 50cd/m<sup>2</sup>以下 (测量角度 0.2°)
  - 200cd/m<sup>2</sup>以下 (测量角度 0.1°)

② 测量环境温湿度超出常温常湿时

## 电源开关 ON

## 将电源开关切为 ON (| 侧)。

- ◆ 液晶显示屏显示初始画面,约5~15秒后显示 测量值画面。
- ◆ 初始画面中显示产品名称 (CS-3000HDR、 CS-3000或CS-2000Plus)、主机版本。产品名 称也可在铭牌中确认。

### 初次开启电源时

将显示"内部时钟"设定画面。 请确认日期和时间,如果存在偏差,请输入正确的日期 和时间。

\* 出厂设定:出货时已调整时间,显示格式:YYYY/MM/DD



按◆键或◆键,移动光标。
 按◆键或◆键,设定日期,并
 按●键,则数值增大。
 按◆键,则数值增大。
 按◆键,则数值减小。
 光标移动至时间设定。







安装篇

安装篇

 按●键或●键,移动光标。
 按●键或●键,设定时间(时/分/秒), 并按●INTER 键。
 按●键,则数值增大。
 按●键,则数值减小。
 之后如需更改设定,请参阅 P.62 进行设定。
 将显示"定期校准提醒"设定画面。



| ATTENTION  |  |
|------------|--|
| INPUT DATE |  |
| 2023/09/22 |  |
| 11.20.00   |  |



## <u>电源开关 OFF</u>

测量结束,切断主机电源时,将电源开关切为 OFF (〇侧)。





# 测量速度的选择

| 限据测量Ⅰ                     | 民据测量目的, 选择测量速度。 测量速度有以下/ 种模式。                                                                                                                                            |                       |                                                                                       |                                                                                                                      |                                                                                                                    |  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| 测量速度                      | 动作说明                                                                                                                                                                     | 暗电流测量*2               | 优点                                                                                    | 注意点                                                                                                                  | 测量对象示例                                                                                                             |  |
| NORMAL                    | 该模式根据测量光源的亮度,<br>在 0.005 秒 至 92 秒 (CS-<br>2000Plus 为 120 秒) 范围<br>内改变积分时间 <sup>+1</sup> 进行测量。<br>该模式侧重于进行低亮测量时<br>的性能。                                                   | [STANDARD<br>DARK]    | 提高约 4cd/m <sup>2</sup><br>(测量角度<br>1°)以下的低<br>亮度下的精度<br>和重复性。                         | 在低亮度测量中,测量<br>时间最长需要约4分钟,<br>因此如果光源亮度在测<br>量过程中发生变化,则<br>得到的是平均后的亮<br>度。此外,请勿在测量<br>过程中移动本仪器。<br>测量闪烁光源时,或许<br>更适合使用 | 恒 ( 等 )                                                                                                            |  |
| FAST                      | 该模式根据测量对象的亮度,在0.005秒至16秒范<br>围内改变积分时间进行测量。                                                                                                                               | [STANDARD<br>DARK]    | 缩短约 4cd/m <sup>2</sup><br>(测量角度<br>1°)以下的低<br>亮度下的测量<br> 时间。                          | 如果追求低亮度测量的<br>更高精度和重复性, 请<br>根据需要选择 NORMAL<br>模式。                                                                    | 同上                                                                                                                 |  |
| SUPER-<br>FAST1           | 该模式根据测量对象的亮度,改变积分时间进行测量。测量积分时间约为<br>NORMAL的1/20.                                                                                                                         | [INTELLIGENT<br>DARK] | 缩短测量时间。                                                                               | 如果追求低亮度测量的更高精度和重复性, 请根据需要选择 NORMAL、<br>FAST模式。                                                                       | 同上                                                                                                                 |  |
| SUPER-<br>FAST2           | 该模式根据测量对象的亮度,改变积分时间进行测量。测量积分时间约为<br>NORMAL的1/90.                                                                                                                         | [INTELLIGENT<br>DARK] | 缩短测量时间。                                                                               | 如果追求低亮度测量的更高精度和重复性, 请根据需要选择 NORMAL、<br>FAST模式。                                                                       | 同上                                                                                                                 |  |
| MULTI<br>INTEG-<br>NORMAL | 该模式按照 NORMAL 模式的<br>积分时间进行多次测量并取<br>平均值。在设定的积分时间<br>以上的亮度条件下,积分时<br>间与 NORMAL 模式的测量相<br>同。<br>闪烁光的测量中,不知道同<br>步周期时或是知道同步周期时<br>。<br>和情况下,请先将同步方法<br>设定为 [NO SYNC] 再使用。   | [STANDARD<br>DARK]    | 可以实现不依赖<br>于测量对象的同步周期的测量。<br>提高约4cd/m <sup>2</sup><br>(测以下的惯定<br>高度下的精度和重复性。          | 高亮度下也会花费设定<br>的积分时间 (1秒或以<br>上)。                                                                                     | 闪烁光知<br>(同的光知<br>周源<br>、<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>、<br>の<br>、<br>の<br>、<br>の<br>、<br>の |  |
| MULTI<br>INTEG-<br>FAST   | 该模式按照 FAST 模式的积分<br>时间进行多次测量并取平均<br>值。在设定的积分时间以上<br>的亮度条件下,积分时间与<br>FAST 模式的测量相同。<br>闪烁光的测量中,不知道同<br>步周期时或是知道同步周期但<br>周期不稳定时也可使用。这<br>种情况下,请先将同步方法<br>设定为 [NO SYNC] 再使用。 | [STANDARD<br>DARK]    | 可以实现不依<br>赖于同步周期的<br>测量。<br>缩短约4cd/m <sup>2</sup><br>(测量角度<br>1°)以下的低<br>亮下的测量<br>时间。 | 高亮度下也会花费设定<br>的积分时间(1秒或以<br>上)。                                                                                      | 闪烁光源<br>(不知道<br>同步源、不<br>周<br>助光源、不<br>稳<br>定<br>的<br>光<br>源)                                                      |  |
| MANUAL                    | 该模式在希望固定积分时间<br>  时使用。<br>  积 分 时 间: 0.005 秒 至 92<br>  秒 (CS-2000Plus 为 120秒)                                                                                            | [STANDARD<br>DARK]    | 可以固定为用<br> 户希望的积分<br> 时间。                                                             | 请注意避免发生 OVER 错<br> 误、 测量精度下降等。<br>                                                                                   | 所有光源                                                                                                               |  |

\*1 传感器对光进行测量的时间,也即"曝光时间"。另一方面,测量时间为(积分时间+暗电流测量时间+快门 开关时间+运算时间),是实际测量所需的时间。

\*2 关于暗电流测量,请参阅 P.89。测量速度各模式中设定的暗电流测量,可以通过测量软件进行变更。

\* 出厂设定: NORMAL、IN-ND: AUTO



设定为 NORMAL、 FAST、 SUPER-FAST1 或 SUPER-FAST2 时

4-a-1. 选择[NORMAL][FAST][SUPER-FAST1] 或 [SUPER-FAST2], 按 ENTER 键。 液晶显示屏变为MENU-MEAS-SPEED MODE – IN-ND 画面。 该画面用于选择是否使用主机中内置的 ND 滤镜。



#### MEAS D MODE(1/2) SPEED AUTO OFF lol ONE □ тwo

| MENU |      |                 |  |  |  |
|------|------|-----------------|--|--|--|
|      | MEAS |                 |  |  |  |
|      |      | SPEED MODE(1/2) |  |  |  |
|      |      | NORMAL          |  |  |  |
|      |      | FAST            |  |  |  |
|      |      | SUPER-FAST1     |  |  |  |
|      |      | SUPER-FAST2     |  |  |  |
|      |      |                 |  |  |  |

MODE(2/2 LTI-INTE INTEG TIME 01s IN-ND AUTO lп



# **4**-a-2. 按▲键或♥键, 并选择 [AUTO] [OFF] [ONE] [TWO] 中的任意一项。

\* 仅 CS-3000HDR 可选择"TWO"。

设定为 [OFF] 而显示 "OVER" 的错误信息时, 请 将 IN-ND 设为 [ONE] 或 [TWO]。

在满足测量条件的情况下对亮度范围广的测量目标物进行测量时 (Y测量等),请将IN-ND设为[OFF]或[ONE]或[TWO]。关于[OFF] [ONE] [TWO] 的选择, 请根据上限亮度选择, 参考标准如下: ~ 100cd/m<sup>2</sup>时选择[OFF], 100 ~ 5,000cd/m<sup>2</sup>时选择[ONE], 5,000 ~ 100,000cd/m<sup>2</sup>~时选择 [TWO]。

# 4-a-3. 按 ENTER 键。

设定确认后,液晶显示屏返回 MENU - MEAS -SPEED MODE 画面。

设定为 MULTI-NORMAL 或 MULTI-FAST 时

## 4-b-1.选择[MULTI-NORMAL] 或[MULTI-FAST], 按ENTER 键。

液晶显示屏变为 MENU - MEAS - SPEED MODE - MULTI-INTEG 画面。

该画面用干输入 MULTI INTEG-NORMAL 模式或 MULTI INTEG-FAST 模式的积分时间。

## **4**-b-2. 按▲键或●键, 设定任意的数值。

按▲键,则数值增大。 按♥键,则数值减小。 积分时间的设定范围为 1s ~ 16s。



# 4-b-3. 按 ENTER 键。 光标移动至 IN-ND 项目。

该画面用于选择是否使用主机中内置的ND滤镜。

## **4**-b-4. 按▲键或**●**键,并选择 [AUTO] [OFF] [ONE] [TWO]<sup>\*</sup> 中的任意一项。

\* 仅 CS-3000HDR 可选择"TWO"。

设定为 [OFF] 而显示 "OVER" 的错误信息时, 请将 IN-ND 设为 [ONE] [TWO]。

在满足测量条件的情况下对亮度范围广的测量目标物进行测量时 (Y测量等),请将IN-ND设为[OFF]或[ONE][TWO]。关于[OFF] [ONE] [TWO] 的选择, 请根据上限亮度选择, 参考标准如下: ~ 100cd/m<sup>2</sup>时选择[OFF],100~5,000cd/m<sup>2</sup>时选择[ONE],5,000 ~ 100.000cd/m<sup>2</sup> ~ 时选择 **[TWO]**。



MENU MEA

INTEG TIME

MENU

INTEG TIME

SPEED MODE(2/2 MULTI-INTEG

105

IN-ND TWO

10s IN-ND AUTO

FFD

ED MODE(2/2 ULTI-INTEG



设定确认后,液晶显示屏返回 MENU - MEAS -SPEED MODE 画面。

设定为 MANUAL 时

# 4-c-1. 选择 [MANUAL], 按 ENTER 键。

液晶显示屏变为MENU-MEAS-SPEED **MODE – MANUAL 画 面**。 该 画 面 用 干 输 入 MANUAL 模式的积分时间。

# **4**-c-2. 按▲键或●键, 设定任意的数值。

按△键,则数值增大。 按♥键,则数值减小。 积分时间的设定范围为 5ms ~ 120,000ms。 积分时间的的有效数字为6位。但是在CS-2000Plus 中,将积分时间设为 4s 以上时,实际 积分时间是 4s 的整数倍。







# **4**-c-3. 按♥键或♥键, 移动光标。

## **4**-c-4. 按必要的位数重复 4-c-2. ~ 3. 的操 作。

## **4**-c-5. 按 ENTER 键。 光标移动至 IN-ND 项目。

该画面用于选择是否使用主机中内置的 ND 滤镜。

# 4-c-6. 按O键或O键,选择 [OFF] 或 [ONE] [TWO]。

\* (C CS-3000HDR 可选择 "TWO"。 设定为 [OFF] 而显示"OVER"的错误信息时, 请将 IN-ND 设为 [ONE] [TWO]。

# 4-c-7. 按 ENTER 键。

设定确认后,液晶显示屏返回 MENU – MEAS – SPEED MODE 画面。



# 5. 按 ESC 键。

设定测量速度,液晶显示屏返回 MENU – MEAS 画面。

## **6. 按 ESC 键。** 液晶显示屏波回 MEN

液晶显示屏返回 **MENU 画面**。

# 7. 按 ESC 键。

液晶显示屏返回 MEAS 画面。



# 同步方法的设定

同步测量是指与按照一定周期闪烁的光源的闪烁频率同步 (例如显示器设备的垂直同步频率等) 并进行测量的模式。

### [INT SYNC]

内同步测量模式用于在不向主机输入垂直同步信号的状态下对显示器设备进行测量时, 或 是测量荧光灯等闪烁光时。显示器设备输入垂直同步信号的频率, 荧光灯等闪烁光与按输 入商用频率 (50或 60Hz)。根据该输入值以及测量目标物的亮度, 自动设定最佳的积 分时间。因此, 请正确输入精确到小数点后2位的值作为频率。

设定与实际不同的频率时,将无法正确测量。无法掌握频率时,建议不执行同步测量而选择 [NO SYNC],测量速度(参阅 P.26)选择 [MULTI INTEG-NORMAL] 或 [MULTI INTEG-FAST]。

\*CS-3000HDR、CS-3000 带有检测显示器设备的发光频率并设定同步测量的功能。(参阅 P.34)

### [EXT SYNC]

外同步测量模式用于通过垂直同步信号输入端子向主机输入垂直同步信号并测量显示器设备。根据垂直同步信号频率以及测量目标物的亮度,自动设定最佳的积分时间。关于垂直同步信号的输入方法 (P.36)。

\*同步频率的设定范围 : 0.5 ~ 200.00Hz

\* 出厂设定 : INT SYNC 59.94Hz



画面中使用 BACKLIGHT 键, 背光灯将会亮起。

| x         | 0.4045           |                  |            |  |  |
|-----------|------------------|------------------|------------|--|--|
| У         | 0.4088           |                  |            |  |  |
| CMF<br>2° | SPD<br>Nrm       | SYN[Hz]<br>59.94 | ACC<br>Non |  |  |
|           |                  |                  |            |  |  |
|           | I*               | TEINU            |            |  |  |
| D ME      | D MEAS           |                  |            |  |  |
|           |                  |                  |            |  |  |
| _         |                  |                  |            |  |  |
| D OPTION  |                  |                  |            |  |  |
| D SE      | D SETUP          |                  |            |  |  |
| D DA      | DARK MEASUREMENT |                  |            |  |  |

设定篇

INFORMATION



# 4-a-3. 按《键或》键并移动光标。

# 4-a-4. 按必要的位数重复 4-a-2. ~ 3. 的 操作。

## 4-a-5. 按 ENTER 键。

设定确认后,液晶显示屏返回 MENU - MEAS - SYNC MODE 画面。

# 4-a-6. 按 ESC 键。

保存。

设定同步方法,液晶显示屏返回 **MENU – MEAS 画面**。 同步方法设定在关闭电源开关(O)后仍会

设定为 NO-SYNC 或 EXT-SYNC 时

## 4-b-1. 选择 [NO SYNC] 或 [EXT SYNC], 按 ENTER 键。

# 5. 按 ESC 键。

液晶显示屏返回 MENU 画面。

# 6. 按 ESC 键。

液晶显示屏返回 MEAS 画面。



. . . . . . . . . . . . . . . . . .

## 关于发光频率检测和设定功能 (仅限 CS-3000HDR、CS-3000)

可以检测显示器设备的发光频率。

将检测到的频率读取至同步测量 [INT SYNC] 中,可以防止因"同步偏差"导致的重复性恶化。

\* 可检测范围 : 亮度 10 ~ 5,000cd/m<sup>2</sup>、发光频率 10 ~ 200Hz



请事先设置好测量目标物和本仪器,并适当调整至能够测量的状态,然后执行发光频率检测。

关于设置, 请参阅测量 (P.70)。

显示 MEAS 画面时,按MENU键。
 液晶显示屏变为MENU画面。
 当液晶显示屏的背光灯熄灭的情况下,在MEAS
 画面中使用 BACKLIGHT 键,背光灯将会亮起。

| <b>KMEAS</b> | 5 SN       | GL>       | UC00         | 1°                   |
|--------------|------------|-----------|--------------|----------------------|
| Lv           | ۷          | 19.3      | 5            | cd<br>m <sup>2</sup> |
| x            | 0.         | 390       | 8            |                      |
| у            | 0.         | 401       | 2            |                      |
| CMF S<br>2°  | SPD<br>Mnl | SYN<br>59 | I[Hz]<br>.94 | ACC<br>Non           |
|              |            |           |              |                      |

| MENU |                  |  |  |
|------|------------------|--|--|
|      | MEAS             |  |  |
|      | MEMORY           |  |  |
|      | OPTION           |  |  |
|      | SETUP            |  |  |
|      | DARK MEASUREMENT |  |  |
|      | INFORMATION      |  |  |
|      |                  |  |  |

| MENU |                              |             |  |  |  |
|------|------------------------------|-------------|--|--|--|
|      | MEAS                         |             |  |  |  |
|      | SPEED                        | [MANUAL]    |  |  |  |
|      | SYNC                         | [INT SYNC ] |  |  |  |
|      | SYNC FRAME<br>[DOUBLE FRAME] |             |  |  |  |
|      | ANGLE                        | [1°]        |  |  |  |
|      |                              |             |  |  |  |

# 2. 按 ▲ 键 或 ● 键 并 选 择 [MEAS], 按 ENTER 键。

液晶显示屏变为 MENU – MEAS 画面。 [SYNC] 项目中显示当前设定内容。
### 3. 按 ▲ 键 或 ● 键 并 选 择 [SYNC], 按 ENTER 键。

液晶显示屏变为 MENU – MEAS – SYNC MODE 画面。

(同步方法选择) 画面。

#### 4. 按▲键或●键并选择 [INT SYNC],按 ENTER 键。

液晶显示屏变为 MENU – MEAS – SYNC MODE – INT SYNC 画面。

### 5. 按测量按钮 (MEASURE)。

检测测量目标物的发光频率,显示检测到的频率。

#### 6. 按 ENTER 键。

检测到的频率被读取至同步测量 [INT SYNC] 中。 液晶显示屏返回 **MENU – MEAS – SYNC MODE** 画面。

### 7. 按 ESC 键。

液晶显示屏返回 MENU – MEAS 画面。

#### 8. 按 ESC 键。

液晶显示屏返回 MENU 画面。

#### 9. 按 ESC 键。

液晶显示屏返回 MEAS 画面。

<MEAS SNGL> UC00 1



MEAS SYNC M

059.9<mark>4</mark> Hz <MEAS:SCAN FREQUENCY>

INTSYNC

MODE

10



#### 垂直同步信号的输入方法

通过从外部输入垂直同步信号,并使用主机检测频率,执行外同步测量。 被测物输出的垂直同步信号通过 BNC 缆线输入至主机。输入信号必须是 CMOS 输入电平, 等级为(0.8/1.2/1.8/3.3/5.0V, 0.5~200Hz)。

通过使主机的 [EXT VOLTAGE] 的设定与输入信号等级相一致,可以实现同步。

\* 出厂设定: [EXT VOLTAGE]3.3V



#### 3. 按●键或♥键并选择[EXT VOLTAGE], 按ENTER 键。 液晶显示屏变为 MENU – SETUP – EXT VOLTAGE 画面。

4. 将输入信号的电压值输入至[EXT VOLTAGE]中。
 按<键<>键
 键
 键
 键
 键
 液晶显示屏变为MENU-SETUP-EXT VOLTAGE

EXT VOLTAGE 项目中显示当前设定内容。



#### 5. 按 ESC 键。

液晶显示屏返回 MENU - SETUP 画面。

#### 6. 按 ESC 键。

液晶显示屏返回 MENU 画面。

#### 7. 按 ESC 键。

液晶显示屏返回 MEAS 画面。

#### 8. 使用 BNC 缆线连接测量目标物的垂直同 步信号输出端子和主机的垂直同步信号 输入端子。

# 同步帧的选择

同步测量中, 同步帧可从 "SINGLE FRAME" 和 "DOUBLE FRAME" 中选择其一。 选择 "SINGLE FRAME" 时, 以垂直扫描信号的周期为 1 个周期, 进行同步测量。 选择 "DOUBLE FRAME" 时, 以垂直扫描信号的周期的 2 倍为 1 个周期, 进行同步测量。 液晶显示器发生闪烁时, 画面以垂直扫描频率的 1/2 的频率变化。为了稳定测量液晶显示 器, 建议设定为垂直扫描周期的 2 倍的积分时间 ("DOUBLE FRAME")。

\* 出厂设定 : DOUBLE FRAME

| 操作步骤<br>6、7<br>1 ESC ▲<br>SETTING BACK-<br>I ENTER ► =<br>COLOR MEMORY ▼                                                               | 2、3、4、5                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>显示 MEAS 画面时,按MENU键。</li> <li>液晶显示屏变为 MENU 画面。</li> <li>当液晶显示屏的背光灯熄灭的情况下,在 MEAS</li> <li>画面中使用 BACKLIGHT 键,背光灯将会亮起。</li> </ol> | KMEAS SNGL> UC00 1°         LV       cd/2         X       X         Y       CMF SPD SYN[Hz] ACC         2°       Nrm 59.94         MENU       MEAS |
|                                                                                                                                        | <ul> <li>MEMORY</li> <li>OPTION</li> <li>SETUP</li> <li>DARK MEASUREMENT</li> <li>INFORMATION</li> </ul>                                           |
| <ol> <li>按 健 或 望 键 并 选 择 [MEAS], 按<br/>ENTER 键。</li> <li>液晶显示屏变为 MENU - MEAS 画面。</li> <li>[SYNC FRAME] 项目中显示当前设定内容。</li> </ol>         | MENU<br>MEAS<br>SPEED [NORMAL]<br>SYNC [INT SYNC]<br>SYNC FRAME<br>SYNC FRAME<br>ANGLE [1°]                                                        |

设定篇

### 3. 按●键或♥键并选择 [SYNC FRAME], 按 ENTER 键。

液晶显示屏变为 MENU - MEAS - SYNC FRAME 画面。

(同步帧选择) 画面。

#### 4. 按●键或●键并选择 [SINGLE FRAME] **[DOUBLE FRAME]**

### 5. 按ENTER 键。

设定同步帧,液晶显示屏返回 MENU – MEAS 画 面。 按ESC键,则取消设定,液晶显示屏返回

MENU – MEAS 画面。

显示格式设定在关闭电源开关(O)后仍会保存。

#### 6. 按 ESC 键。

液晶显示屏返回 MENU 画面。



液晶显示屏返回 MEAS 画面。

|  | M             | ENU                   |
|--|---------------|-----------------------|
|  | 1             | MEAS                  |
|  | SPEED         | [NORMAL]              |
|  | SYNC          | [INT SYNC ]           |
|  | SYNC F<br>[DC | RAME<br>DUBLE FRAME ] |
|  | ANGLE         | [ 1°]                 |
|  |               |                       |

FRAME

□ SYNC FRAME □ SINGLE FRAME □ DOUBLE FRAME

MENU MEAS SYNC FRAME

DOUBLE FRAME

# 测量角度的选择

可从"1°""0.2°""0.1°"3个选项中选择一项作为测量角度。 CS-3000HDR/CS-3000 会依照在 MENU 画面中的选择电动切换测量角度。切换测量角度时, 可能发出马达的声音,这并非异常。

CS-2000Plus 中手动旋转测量角度切换旋钮来切换测量角度。

关于测量距离和测量区域,请参阅下表。请根据需要,安装近摄镜头(可选配件)。 \*出厂设定:1°

(单位: mm)

|        | 最小游  | 则量直  | ī径Ø  | 最大演      | 则量直      | ī径Ø  | 最短 | 测量   | 距离   | 最大 | 测量       | 距离   | 测量3<br>时的 | E离 50<br>测量直 | 0mm<br>径Ø | 测量距<br>时的 | 离 100<br>测量直 | 00mm<br>〔径Ø |
|--------|------|------|------|----------|----------|------|----|------|------|----|----------|------|-----------|--------------|-----------|-----------|--------------|-------------|
| (测量角度) | 1°   | 0.2° | 0.1° | 1°       | 0.2°     | 0.1° | 1° | 0.2° | 0.1° | 1° | 0.2°     | 0.1° | 1°        | 0.2°         | 0.1°      | 1°        | 0.2°         | 0.1°        |
| 无近摄镜头  | 5.00 | 1.00 | 0.50 | $\infty$ | $\infty$ | ∞    |    | 350  |      |    | $\infty$ |      | 7.78      | 1.56         | 0.78      | 16.66     | 3.33         | 1.67        |
| 有近摄镜头  | 1.00 | 0.20 | 0.10 | 1.39     | 0.28     | 0.14 |    | 55.0 |      |    | 70.9     |      | -         | -            | -         | -         | -            | -           |

\*测量距离是从物镜或近摄镜头的金属部末端算起的距离。



# 设定篇

#### 2. 按 ▲ 键 或 ● 键 并 选 择 [MEAS], 按 ENTER 键。

液晶显示屏变为 MENU – MEAS 画面。 [ANGLE] 项目中显示当前设定内容。

#### 3. 按 ♥ 键 或 ♥ 键 并 选 择 [ANGLE], 按 ENTER 键。

液晶显示屏变为 MENU – ANGLE (测量角度选择) 画面。

#### 按●键或●键并选择[1°][0.2°][0.1], 按ENTER键。

设定测量角度,液晶显示屏返回 MENU – MEAS 画面。

电动切换测量角度时,可能发出马达的声音,这 并非异常。

按ESC键,则取消设定,液晶显示屏返回 MENU-MEAS画面。

显示格式设定在关闭电源开关 (O) 后仍会保存。

#### 5. 按 ESC 键。

液晶显示屏返回 MENU 画面。

#### 6. 按 ESC 键。

液晶显示屏返回 MEAS 画面。

#### CS-2000Plus 时

#### 旋转测量角度切换旋钮, 将测量角度设为[1°] [0.2°][0.1°]中的任一。

请勿在测量中旋转测量角度切换旋钮。 如果在测量中切换,可能无法执行测量或得到错误的 测量值。 旋转测量角度切换旋钮时,请转动至有卡顿感的位置。 如果停止在中途位置,可能导致无法执行测量或得到 错误的测量值。



|   | M             | ENU                   |
|---|---------------|-----------------------|
|   | ſ             | MEAS                  |
|   | SPEED         | [NORMAL]              |
| _ | SYNC          | [INT SYNC ]           |
|   | SYNC F<br>[DC | RAME<br>OUBLE FRAME ] |
|   | ANGLE         | [0.1°]                |

SPEED

SYNC

D ANGLE

п

[NORMAL]

[INT SYNC ]

□ SYNC FRAME □ [DOUBLE FRAME]

# 颜色匹配函数的选择

选择色度计算中使用的颜色匹配函数 (CMF)。

- \* 设定颜色匹配函数 : CIE1931 (2°)、CIE1964 (10°)、CIE170-2:2015 (Physiological Axes2°)、CIE170-2: 2015 (Physiological Axes10°)
- \* 出厂设定 : CIE1931 (2°)
- 操作步骤

|   | 6, 7                        |   |       |     |    |       |
|---|-----------------------------|---|-------|-----|----|-------|
| 1 | MENU ESC                    |   |       |     |    |       |
|   | SETTING BACK-<br>INFO LIGHT | ◀ | ENTER | ▶ = | 2, | 3、4、5 |
|   | COLOR<br>MODE MEMORY        |   |       |     |    |       |

#### **1. 显示 MEAS 画面时,按MENU键。** 液晶显示屏变为 MENU **画面**。

当液晶显示屏的背光灯熄灭的情况下,在 MEAS 画面中使用 **BACKLIGHT** 键,背光灯将会亮起。

#### 2. 按 ❹ 键 或 ♥ 键 并 选 择 [SETUP], 按 ENTER 键。

液晶显示屏变为 MENU – SETUP 画面。 [CMF] 项目中显示当前设定内容。

#### 3. 按 ▲ 键 或 ● 键 并 选 择 [CMF], 按 ENTER 键。

液晶显示屏变为 MENU – SETUP – CMF (颜色 **匹配函数选择) 画面**。



| MENO             |
|------------------|
| MEAS             |
| MEMORY           |
| OPTION           |
| SETUP            |
| DARK MEASUREMENT |
| INFORMATION      |





# 4. 按●键或●键并选择 CIE 1931(2°)、 CIE 1964(10°)、 CIE 170-2(PA2°)、 CIE 170-2(PA10°)。



### 5. 按 ENTER 键。

设定颜色匹配函数,液晶显示屏返回 MENU - SETUP 画面。 按 ESC 键,则取消设定,液晶显示屏返回 MENU - SETUP 画面。 颜色匹配函数设定在关闭电源开关(O) 后仍会 保存。

#### 6. 按 ESC 键。

液晶显示屏返回 MENU 画面。

#### 7. 按 ESC 键。

液晶显示屏返回 **MEAS 画面**。 颜色匹配函数设为 CIE1931 (2°) 以外,时,L<sub>v</sub> 显示切换至 Y 显示。



# 显示格式的选择

可以将亮度和三刺激值 X,Y,Z 的显示格式设置为常规显示 (至小数点后四位) 或者指数显示。如果液晶显示屏上的测量值不可读, 请使用指数指示。

- \*显示格式的设定 : 常规、指数
- \* 出厂设定 : \*\*\*\*.\*\*\*\* [F]
- \* 常规显示中,显示位数为6位(亮度和 X·Y·Z 在 1000000 以上)时,显示为"\*\*\*\*\*\*.\*\*\*\*"。 这种情况下,设为指数显示,即可显示数值。



| 1. | 显示 MEAS 画面时,按 MENU 键。             |
|----|-----------------------------------|
|    | 液晶显示屏变为 <b>MENU 画面</b> 。          |
|    | 当液晶显示屏的背光灯熄灭的情况下,在 MEAS           |
|    | 画面中使用 <b>BACKLIGHT</b> 键,背光灯将会亮起。 |

| 2. | 按 🗘 键 或 💙 键 并 选 择 [SETUP], | 按 |
|----|----------------------------|---|
|    | ENTER 键。                   |   |

液晶显示屏变为 MENU – SETUP 画面。 [DATA FORM] 项目中显示当前设定内容。

| <mea< th=""><th>S SN</th><th>GL&gt;</th><th>UC00</th><th>) 1°</th></mea<> | S SN       | GL>       | UC00         | ) 1°                 |  |  |  |
|---------------------------------------------------------------------------|------------|-----------|--------------|----------------------|--|--|--|
| Lv                                                                        | 2          | 19.6      | 6            | cd<br>m <sup>2</sup> |  |  |  |
| x                                                                         | 0.         | 0.4045    |              |                      |  |  |  |
| У                                                                         | 0.         | 408       | 8            |                      |  |  |  |
| CMF<br>2°                                                                 | SPD<br>Nrm | SYN<br>59 | I[Hz]<br>.94 | ACC<br>Non           |  |  |  |
|                                                                           |            |           |              |                      |  |  |  |
|                                                                           | M          | 1ENU      | J            |                      |  |  |  |
|                                                                           |            |           |              |                      |  |  |  |
|                                                                           | D MEMORY   |           |              |                      |  |  |  |
| D OP                                                                      | TION       | ON        |              |                      |  |  |  |
| D SET                                                                     | D SETUP    |           |              |                      |  |  |  |
| D DA                                                                      | RK ME      | EASI      | JREM         | ENT                  |  |  |  |
|                                                                           | OPM        | RMATION   |              |                      |  |  |  |

|   |   | MENU             |
|---|---|------------------|
|   |   | SETUP(2/3)       |
|   |   |                  |
|   |   | DATA FORM [F]    |
|   |   |                  |
|   |   | RS-232C BAUDRATE |
|   |   | [115200bns]      |
| _ |   | 115200555        |
| п |   | EXT VOLTAGE      |
| - | - |                  |
| - |   | 23.541           |
| - |   | DATE TIME        |
| _ | • |                  |
| ч |   | L 2022/10/07     |
|   |   | 11:38:04]        |

# 按△键或◇键并选择 [DATA FORM], 按 ENTER 键。 液晶显示屏变为 MENU – SETUP – DATA FORM

(显示格式选择)画面。

# 4. 按❹键或♥键并选择 [\*\*\*\*.\*\*\*\* [F]] 或 [\*.\*\*\*E+\* [E]]。

### 5. 按ENTER 键。

设定显示格式,液晶显示屏返回 MENU – SETUP 画面。 按 ESC 键,则取消设定,液晶显示屏返回 MENU – SETUP 画面。 显示格式设定在关闭电源开关(O)后仍会保存。

#### 6. 按 ESC 键。

液晶显示屏返回 MENU 画面。

7. 按 ESC 键。

液晶显示屏返回 MEAS 画面。

| <me4< th=""><th>AS SN</th><th>GLX JC00</th><th>) 1°</th></me4<> | AS SN      | GLX JC00         | ) 1°       |
|-----------------------------------------------------------------|------------|------------------|------------|
| Lv(                                                             | 4.96       | 62E+1            | cd m       |
| х                                                               | 0.         | 4045             |            |
| у                                                               | 0.         | 4088             |            |
| CMF<br>2°                                                       | SPD<br>Nrm | SYN[Hz]<br>59.94 | ACC<br>Non |



MENU

\* \*\*\* F+\*





#### 分光辐射亮度计负值的处理设定

根据测量情况, 可能出现分光辐射亮度为负值的情况。出现负值时, 可从以下2种处理 方法中选择一种。

- ・ NO PROC: 作为负值处理 ・ TO ZERO: 将负值视为 0 进行处理
- \* 出厂设定 : \*[NEGATIVE VALUE] NO PROC



#### **1**.显示 MEAS 画面时,按 MENU键。

液晶显示屏变为 **MENU 画面**。 当液晶显示屏的背光灯熄灭的情况下,在 MEAS 画面中使用 **BACKLIGHT** 键,背光灯将会亮起。

| <pre><meas sngl=""> UC00 1°</meas></pre> |            |           |              |                      |  |  |  |
|------------------------------------------|------------|-----------|--------------|----------------------|--|--|--|
| Lv                                       | (          | 58.1      | 2            | cd<br>m <sup>2</sup> |  |  |  |
| x                                        | 0.         | 381       | 4            |                      |  |  |  |
| у                                        | у 0.3909   |           |              |                      |  |  |  |
| CMF<br>2°                                | SPD<br>Nrm | SYN<br>59 | I[Hz]<br>.94 | ACC<br>Non           |  |  |  |
|                                          | P          | 1ENU      | J            |                      |  |  |  |
| D ME                                     | D MEAS     |           |              |                      |  |  |  |
| MEMORY                                   |            |           |              |                      |  |  |  |
| D OPTION                                 |            |           |              |                      |  |  |  |
| D SET                                    | D SETUP    |           |              |                      |  |  |  |
| DARK MEASUREMENT                         |            |           |              |                      |  |  |  |

#### 2. 按▲键或●键并选择 [OPTION], 按 ENTER 键。

液晶显示屏变为 MENU – OPTION 画面。 [NEGATIVE VALUE]项目中显示当前设定内容。

| _ |             |        |
|---|-------------|--------|
|   | MENU        |        |
|   | OPTION(1    | /2)    |
|   |             |        |
|   | NEGATIVE VA | LUE    |
|   | ГΤΟ         | ZERO ] |
|   |             |        |
|   | USER CAL    | LOFFJ  |
|   | CLOSE UP    | [OFF]  |
| - | CLODE OI    | 20113  |
|   | EXT-ND      |        |
|   |             | [OFF]  |
|   |             |        |
|   |             |        |

□ INFORMATION



#### 3. 按 △ 键 或 ♥ 键 并 选 择 [NEGATIVE VALUE], 按 ENTER 键。 液晶显示屏变为 MENU – OPTION – NEGATIVE VALUE 画面。

#### 4. 按●键或●键并选择 [NO PROC] [TO ZERO], 按ENTER 键。 液晶显示屏返回 MENU - OPTION 画面。

OPTION(1/2) NEGATIVE VALUE CHANGE TO ZERO DD NO PROCESS MENU OPTION(1/2) NEGATIVE VALUE [NO PROCESS] DD USER CAL [OFF] DD CLOSE UP [OFF] DD EXT-ND [OFF]

MENU OPTION(1/2) NEGATIVE VALUE

1/2) VALUE

CHANGE TO ZERO

DDD NO PROCESS

### 5. 按 ESC 键。

液晶显示屏返回 MENU 画面。

#### 6. 按 ESC 键。

液晶显示屏返回 MEAS 画面。

# 色空间模式的选择

色空间模式的种类如下。

\* 出厂设定 : L<sub>v</sub>xy

|                         | 液晶显                                                                                                                                                                                                                  | 横式的说明                                                                                                                                                                                                           |                                                                               |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 巴仝问侯式                   | (显示格式为常规显示时)                                                                                                                                                                                                         | (显示格式为指数显示时)                                                                                                                                                                                                    |                                                                               |
| L <sub>v</sub> xy*1     | (MEAS SNGL) UC00 1°<br>LV 49.66 <sup>cd</sup> /m <sup>2</sup>                                                                                                                                                        | (MEAS SNGL) UC00 1°<br>LV 4.9662E+1 <sup>cd</sup> m <sup>2</sup>                                                                                                                                                | 用亮度 L <sub>v</sub> 、 色度坐标 x、<br>y 显示和输出                                       |
|                         | X 0.4045<br>Y 0.4088<br>CMF SPD SYN[Hz] ACC                                                                                                                                                                          | X 0.4045<br>Y 0.4088<br>CMF SPD SYN[Hz] ACC                                                                                                                                                                     |                                                                               |
| L <sub>v</sub> u' v' *1 | 2*         Nrm         59.94         Non           CMEAS         SNGL>         UC00         1*           Lv         49.66         cd/m2           u'         0.2280         V'           v'         0.5185           | 2°         Nrm         59:94         Non            MEAS         SNGL>         UC00         1°           LV         4.9662E+1         cd/m²         cd/m²           U'         0.2280         V'         0.5185 | 用亮度 L <sub>v</sub> 、 u' v' 色度<br>图 (CIE 1976 UCS 色度<br>图) 坐标 u'、 v' 显示<br>和输出 |
| L <sub>v</sub> Tcp∆uv   | CMF     SPD     SYNIH21     ACC       2°     Nrm     59.94     Non         (MEAS SNGL)     UCOO     1°       Lv     49.66     Cm2       Tcp     3657K       duv     +0.008       CMF     SP.94     Non               | CMF SPD SYN[Hz] ACC<br>2° Nrm 59.94 Non<br>✓MEAS SNGL> UC00 1°<br>Lv 4.9662E+1 Cm <sup>2</sup><br>Tcp 3657K<br>duv +0.008<br>CMF SPD SYN[Hz] ACC<br>2° Nrm 59.94 Non                                            | 用亮度 L <sub>ν</sub> 、 相关色温<br>Tcp、 与黑体轨迹的色<br>差 Δuv 显示和输出                      |
| XYZ                     | KMEAS         SNGL>         UCOO         1°           X         49.14 $\overset{cd}{m^2}$ Y         49.66           Z         22.67           CMF         SPD           SYNIH21         ACC           2°         Nrm | ⟨MEAS_SNGL> UC00_1°         X       4.9137E+1       Cm²         Y       4.9662E+1         Z       2.2672E+1         CMF       SPD       SYN[Hz]         ACC       2°       Nrm                                  | 用 3 个 刺 激 值 X、 Y、<br>Z 显示和输出                                                  |
| 特征波长和<br>激发纯度 *2        | CMEAS SNG<br>λd +577.<br>Pe 44.<br>CMF SPD S                                                                                                                                                                         | 12 UC00 1°<br>328nm<br>14%<br>59.94 ACC<br>59.94 Non                                                                                                                                                            | 用特征波长 λd、 激发纯度 P。显示和输出                                                        |
| 光谱图                     | (MEAS SNG<br>380 <u>C 38</u><br>CMF SPD S<br>2° SPD S                                                                                                                                                                | L> UC00 1°<br>0nm → 780<br>00E + 0<br>59.94 Non                                                                                                                                                                 | 用分光波形来显示和输出<br>分 光 辐 射 亮 度<br>L <sub>e</sub> (λ)                              |

- \*1 颜色匹配函数设为 CIE1931 (2°) 以外时,不显示 L<sub>v</sub> 而是显示 Y。
- \*2 对于非光谱颜色,显示补充特征波长,显示符号仍为λd。此时,仍使用λd作为记号。
   \* 如果某色空间模式下的计算值,未能落在该色空间的允许范围内,则显示为
  - "\_\_\_\_"



#### 显示 MENU 画面、MEMORY 画面时, 按ESC 键,切换至 MEAS 画面。

# **2.** 按 COLOR MODE 键,显示所需要的色空间模式。

每次按下 **COLOR MODE** 键,测量画面会按照 L<sub>v</sub>xy→L<sub>v</sub>u'v'→L<sub>v</sub>T<sub>cp</sub>Δuv→XYZ→λd·P<sub>e</sub>→光谱图 →L<sub>v</sub>xy→的顺序切换。

颜色匹配函数设为CIE1931(2°)以外时,按照 Yxy→Yu′v′→XYZ→λd·P<sub>e</sub>→光谱图→Yxy→的顺序 切换。

色空间模式设定在关闭电源开关(O)后仍会保存。

| MEA                                                                        | S SN                    | IGL>                 | 0000             | $1^{\circ}$          |
|----------------------------------------------------------------------------|-------------------------|----------------------|------------------|----------------------|
| Lv                                                                         | 4                       | 49.6                 | 6                | cd<br>m <sup>2</sup> |
| x                                                                          | 0.                      | 404                  | 5                |                      |
| у                                                                          | 0.                      | 408                  | 8                |                      |
| CMF<br>2°                                                                  | SPD<br>Nrm              | SYN<br>59            | I[Hz]<br>.94     | ACC<br>Non           |
|                                                                            |                         |                      |                  |                      |
|                                                                            | C CN                    |                      | 11000            |                      |
| <mea< td=""><td>S SN</td><td>IGL&gt;</td><td>UC00</td><td>) 1°</td></mea<> | S SN                    | IGL>                 | UC00             | ) 1°                 |
| LV                                                                         | S SN                    | 1GL><br>49.6         | 0000<br>6        | cd<br>m <sup>2</sup> |
| Lv<br>u'                                                                   | <u>s sn</u><br>0.       | 49.60<br>2280        | 0000<br>6<br>0   | cd<br>m <sup>2</sup> |
| Lv<br>u'<br>v'                                                             | <u>s sn</u><br>0.<br>0. | 49.60<br>2280<br>518 | 0<br>6<br>0<br>5 | cd<br>m <sup>2</sup> |

# 使用近摄镜头时

测量小面积光源时, 请使用可选配件中的近摄镜头。 近摄镜头的安装方法, 请参阅近摄 镜头的使用说明书。

如果加装了近摄镜头, 需要在测量值中加入镜头透过率的补偿。 每个近摄镜头有与之匹配的补偿系数。 使用本仪器标配的分光辐射度计软件 CS-S30 设置近摄透镜的系数。 设置后, 当镜头类型选为近摄镜头时, 可获得添加了补偿系数的测量值。 相关详细信息, 请参阅 CS-S30 的使用说明书。

错误的镜头类型设置将会导致测量结果不精确。

此外,请勿将近摄镜头与 ND 滤镜、照度适配器等同时使用。 否则将导致测量结果不精确。



显示 MEAS 画面时,按MENU键。
 液晶显示屏变为 MENU 画面。
 当液晶显示屏的背光灯熄灭的情况下,在 MEAS
 画面中使用 BACKLIGHT 键,背光灯将会亮起。

| <mea< th=""><th>S SN</th><th>IGL&gt;</th><th>UC00</th><th>) 1°</th></mea<> | S SN       | IGL>      | UC00         | ) 1°                 |
|----------------------------------------------------------------------------|------------|-----------|--------------|----------------------|
| Lv                                                                         |            | 67.8      | 2            | cd<br>m <sup>2</sup> |
| x                                                                          | 0.         | 404       | 1            |                      |
| У                                                                          | 0.         | 407       | 0            |                      |
| CMF<br>2°                                                                  | SPD<br>Nrm | SYN<br>59 | I[Hz]<br>.94 | ACC<br>Non           |
|                                                                            |            |           |              |                      |

|  | MENU             |
|--|------------------|
|  | MEAS             |
|  | MEMORY           |
|  | OPTION           |
|  | SETUP            |
|  | DARK MEASUREMENT |
|  | INFORMATION      |
|  |                  |

#### 2. 按▲键或●键并选择 [OPTION],按 ENTER键。

液晶显示屏变为 MENU - OPTION 画面。

|   | MENU     | J                |
|---|----------|------------------|
|   | OPTION   | (1/2)            |
| 0 | NEGATIVE | VALUE<br>O PROC] |
|   | USER CAL | [OFF]            |
|   | CLOSE UP | [OFF]            |
|   | EXT-ND   | [OFF]            |

### 3. 按▲键或●键并选择 [CLOSE UP], 按 ENTER 键。

液晶显示屏变为 MENU – OPTION – CLOSE UP ([OFF] [ON] 选择) 画面。

# 4. 按○键或○键并选择 [ON]。

取下近摄镜头时,请选择 [OFF]。

### 5. 按 ENTER 键。

设定近摄镜头,液晶显示屏返回 MENU – OPTION 画面。 按ESC键,则取消设定,液晶显示屏返回 MENU – OPTION 画面。 镜头类型设定在关闭电源开关(O)后仍会保存。

#### 6. 按 ESC 键。

液晶显示屏返回 MENU 画面。

7. 按 ESC 键。

液晶显示屏返回 MEAS 画面。

| <b>KMEA</b> | S SNGL>          | UC00          | 1°           |
|-------------|------------------|---------------|--------------|
| Lv          | 67.8             | 32            | cd<br>m²     |
| x           | 0.404            | 1             |              |
| у           | 0.407            | 0             | $\frown$     |
| CMF<br>2°   | SPD SY<br>Nrm 59 | N[Hz]<br>9.94 | ACC<br>C-U   |
|             |                  |               | $\mathbf{i}$ |

|  | MEN      | J                 |
|--|----------|-------------------|
|  | OPTION   | 1(1/2)            |
|  | NEGATIVE | VALUE<br>NO PROC] |
|  | USER CAL | [OFF]             |
|  | CLOSE UP | [ON]              |
|  | EXT-ND   | [OFF]             |

MENU TION(1/2)

MENU OPTION(1/2)

# <u>使用 ND 滤镜时</u>

测量高亮度物体时, 需要使用选购的 ND 滤镜。

如果加装了 ND 滤镜, 必须在测量值中加入滤镜透过率的补偿。 每个 ND 滤镜有与之匹配的补偿系数。 使用本仪器标配的分光辐射度计软件 CS-S30 设置 ND 滤镜的系数。 设置后, 当镜头类型选为 ND 滤镜时, 可获得添加了补偿系数的测量值。 相关详细信息, 请参阅 CS-S30 的使用说明书。

如果设定错误的配件, 会导致测量结果不精确。

此外, 请勿将 ND 滤镜与近摄镜头、 照度适配器等同时使用。 会导致测量结果不精确。 此外, 主机另行内置了 ND 滤镜。 该内置 ND 滤镜的使用 / 不使用, 可以从以下模式中 选择:根据测量目标物的亮度自动切换的 [AUTO]、始终不使用的 [OFF]、始终使用的 [ONE] [TWO] (参阅 P.28)。

\*EXT-ND : OFF、EXT-ND10 (1/10) 、EXT-ND100 (1/100) \* 出厂设定 : EXT-ND: OFF、IN-ND: AUTO



设定篇

### 3. 按 ♥ 键或 ♥ 键并选择 [EXT-ND], 按 ENTER 键。

液晶显示屏变为 MENU – OPTION – EXT-ND (ND 滤镜选择) 画面。

# 4. 按●键或●键并选择 [OFF] 或 [EXT-ND10] 或 [EXT-ND100]。

### 5. 按ENTER键。

设 定 ND 滤 镜, 液 晶 显 示 屏 返 回 **MENU – OPTION 画面。** 按**ESC** 键,则取消设定,液晶显示屏返回 **MENU – OPTION 画面。** ND 滤镜设定在关闭电源开关(O) 后仍会保存。

### 6. 按 ESC 键。

液晶显示屏返回 MENU 画面。



液晶显示屏返回 MEAS 画面。

| <mea< th=""><th>AS SN</th><th>IGL&gt; UC</th><th>COO 1°</th></mea<> | AS SN      | IGL> UC        | COO 1°               |
|---------------------------------------------------------------------|------------|----------------|----------------------|
| Lv                                                                  |            | 67.82          | cd<br>m <sup>2</sup> |
| x                                                                   | 0.         | 4041           |                      |
| у                                                                   | 0.         | 4070           | $\frown$             |
| CMF<br>2°                                                           | SPD<br>Nrm | SYN[H<br>59.94 | z] ACC               |
|                                                                     |            |                |                      |



MENU OPTION(1/2)

DDD EXT-ND10

DDD EXT-ND10

DDD EXT-ND100

# 使用照度适配器时

进行照度测量时, 请使用可选配件中的照度适配器。 照度适配器的安装方法, 请参阅照 度适配器的使用说明书。此外, 照度适配器将在与本仪器一并校准的状态下提供。 选择照度适配器作为配件, 并将其安装到本仪器上, 其精度相当于 JIS C1609-1:2006 普通 型 AA 级照度计, 光谱波长宽 5nm 以下。 JIS C1609-1:2006 AA 普通级照度计的精度进行 分光辐射照度测量。 测量时请转动对焦环, 将焦点距离调至无限大 (∞)。 如果焦点距离不同, 将无法正确 执行测量。

如果设定错误的配件, 将导致测量结果不精确。此外, 请勿将照度适配器与近摄镜头、 ND 滤镜等同时使用。 否则将无法正确执行测量。

#### 测量照度范围 (A光源光谱)

| 测量角度 | CS-3000HDR          | CS-3000           | CS-2000Plus     |
|------|---------------------|-------------------|-----------------|
| 1°   | 0.01 ~ 1,400,000lx  | 0.012 ~ 70,000lx  | 0.08 ~ 70,000lx |
| 0.2° | 0.25 ~ 35,000,000lx | 0.3 ~ 1,750,000lx | 2 ~ 1,750,000lx |
| 0.1° | 1 ~ 140,000,000lx   | 1.2 ~ 7,000,000lx | 8 ~ 7,000,000lx |

但是, 在 A 光源的实测中, 由于受光源发热的影响, 上限为 100,000lx 左右。





 
 接●键或●键并选择 [ILLUMINANCE], 按ENTER 键。
 液晶显示屏变为 MENU - OPTION ILLUMINANCE 画面。

 4. 按▲键或●键并选择 [ON], 按 ENTER 键。

设定照度适配器,液晶显示屏显示注意消息。 按[ESC]键,则取消设定,液晶显示屏返回 MENU-OPTION画面。

5. 转动对焦环,将焦距设为∞。

- 6. 按 ESC 键。 液晶显示屏变为 MENU – OPTION – ILLUMINANCE 画面。
- 7. 按 ESC 键。 液晶显示屏变为 MENU - OPTION 画面。

液晶显示拼变为 MENU - OPTION 画直

- **8. 按 ESC 键。** 液晶显示屏返回 MENU 画面。
- 按 ESC 键。
   液晶显示屏返回 MEAS 画面。

# <u>测量期间打开 / 关闭背光灯</u>

测量期间可选择性地打开或关闭液晶显示屏的背光灯。 关闭背光灯, 可避免液晶显示屏背光灯在周围区域上的反射对测量值造成的影响。 如果显示 <MEAS> (测量) 界面时按下 BACKLIGHT (背光灯) 键,则强行关闭背光灯, 但不影响下列设置。

\* 出厂设定 : ON( 打开 )



# **1**.显示 MEAS 画面时,按 MENU键。

液晶显示屏变为 **MENU 画面**。 当液晶显示屏的背光灯熄灭的情况下,在 MEAS 画面中使用 **BACKLIGHT** 键,背光灯将会亮起。

| <b><meas< b=""></meas<></b> | SN       | GL>       | UC00         | 1°                   |
|-----------------------------|----------|-----------|--------------|----------------------|
| Lv                          | (        | 63.6      | 0            | cd<br>m <sup>2</sup> |
| x                           | 0.       | 401       | 5            |                      |
| у                           | 0.       | 406       | 1            |                      |
| CMF S<br>2° N               | PD<br>rm | SYN<br>59 | I[Hz]<br>.94 | ACC<br>Non           |
|                             | D.       |           |              |                      |

|   | MENU             |
|---|------------------|
|   | MEAS             |
|   | MEMORY           |
|   | OPTION           |
|   | SETUP            |
|   | DARK MEASUREMENT |
|   | INFORMATION      |
| 1 |                  |

#### 2. 按 ❹ 键 或 ♥ 键 并 选 择 [SETUP], 按 ENTER 键。

液晶显示屏变为 MENU – SETUP 画面。

[BACKLIGHT@MEAS] 项目中显示当前设定内容。

| MENU |            |                          |  |  |
|------|------------|--------------------------|--|--|
|      | SETUP(1/3) |                          |  |  |
|      |            | CMF [2°]                 |  |  |
|      |            | BACKLIGHT@MEAS<br>[ON]   |  |  |
|      |            | RS-POWER SUPPLY<br>[OFF] |  |  |
|      |            |                          |  |  |
|      |            |                          |  |  |

3. 按 ② 键 或 ◎ 键 并 选 择 [BACKLIGHT@ MEAS],按 ENTER 键。 液晶显示屏变为 MENU – SETUP – BACKLIGHT @MEAS (测量中背光灯的亮灯 / 熄灭切换) 画面。

### 4. 按△键或♥键并选择 [ON] 或 [OFF]。



### 5. 按 ENTER 键。

设定测量中背光灯的亮灯 / 熄灭,液晶显示屏返 回 MENU - SETUP 画面。 按 ESC 键,则取消设定,液晶显示屏返回 MENU - SETUP 画面。 测量中背光灯的亮灯 / 熄灭设定在关闭电源开关 (O)后仍会保存。

#### 6. 按 ESC 键。

液晶显示屏返回 MENU 画面。

#### 7. 按 ESC 键。

液晶显示屏返回 MEAS 画面。

| MENU           |            |                                    |  |  |
|----------------|------------|------------------------------------|--|--|
|                | SETUP(1/3) |                                    |  |  |
| ]              | CMF        | [2°]                               |  |  |
| , <sup>_</sup> | BACKLIGHT  | @MEAS<br>[OFF]                     |  |  |
|                | RS-POWER   | SUPPLY<br>[OFF]                    |  |  |
| 1              |            |                                    |  |  |
| ן              |            |                                    |  |  |
|                |            | MENU<br>SETUP(<br>CMF<br>BACKLIGHT |  |  |

设定篇

# RS-232C 通信用波特率的选择

可以设定使用 RS-232C 与电脑连接时的波特率。

\*波特率 : 1200、2400、4800、9600、19200、38400、57600、115200、230400、460800、921600

\* 出厂设定 : 115200

**备注** 使用 USB 与电脑连接时,不需要本操作。并且,即使变更本波特率设定,USB 通信速度也不会改变。



# 设定篇

#### 3. 按△键或♥键并选择 [RS-232C BAUDRATE], 按ENTER 键。 液晶显示屏变为 MENU - SETUP - RS-232C BAUDRATE (RS-232C 通信用波特率的选择) 画面。

#### 4. 按〇键或〇键并选择波特率值。

按▲键,则数值增大。 按♥键,则数值减小。

### 5. 按ENTER 键。

设定波特率,液晶显示屏返回 MENU - SETUP 画面。

按 ESC 键,则取消设定,液晶显示屏返回 MENU – SETUP 画面。

RS-232C 通信用波特率选择设定在关闭电源开关 (O) 后仍会保存。

### 6. 按 ESC 键。

液晶显示屏返回 MENU 画面。

#### 7. 按 ESC 键。

液晶显示屏返回 MEAS 画面。

| MENU |       |                    |                    |
|------|-------|--------------------|--------------------|
|      | SI    | <u>ETUP(2</u>      | /3)                |
|      | DATA  | FORM               | [F]                |
|      | RS-23 | 2C BAI<br>[115     | JDRATE<br>200bps]  |
|      | EXT V | OLTAG              | E<br>[3.3V]        |
|      | DATE  | TIME<br>[202<br>13 | 2/10/11<br>:39:14] |



# RS-232C 供电的设定

可以向连接至本仪器 RS-232C 端子的设备供电 (DC 6V)。 使用 RS-232C-Bluetooth 转换接头,可以将本仪器与搭载 Bluetooth 的电脑连接。 除非连接了需要供电的设备, 否则请勿打开 RS-232C 连接器的供电。

\* 出厂设定 : OFF

设定篇

| 操作步骤 6、7                                                                                                                               |                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 1                                                                                                                                      | ——2、3、4、 <b>5</b>                                                                       |
| <ol> <li>显示 MEAS 画面时,按MENU键。</li> <li>液晶显示屏变为 MENU 画面。</li> <li>当液晶显示屏的背光灯熄灭的情况下,在 MEAS</li> <li>画面中使用 BACKLIGHT 键,背光灯将会亮起。</li> </ol> | (MEAS SNGL) UC00 1°         LV $63.60$ X $0.4015$                                       |
|                                                                                                                                        | Y 0.4061<br>CMF SPD SYN[Hz] ACC<br>2° Nrm 59.94 Non<br>MENU<br>MEAS<br>MEMORY<br>OPTION |
| 2. 按 ▲ 键 或 ● 键 并 选 择 [SETUP], 按<br>ENTER 键。                                                                                            | SETUP     DARK MEASUREMENT     INFORMATION     MENU     SETUP(1/3)     CMF     [2°]     |
| 液晶显示屏变为 <b>MENU – SETUP 画面</b> 。                                                                                                       | BACKLIGHT@MEAS<br>[ON]<br>RS-POWER SUPPLY<br>[OFF]                                      |

设定篇

#### 3. 按○键或○键并选择 [RS-POWER SUPPLY], 按 ENTER 键。 液晶显示屏变为 MENU – SETUP – RS-POWER SUPPLY 画面。

MENU TUP(1/ ATTENTION Connect only devices that can withstand power supply. OK CANCEL 

4. 按●键或●键并选择 [ON (Supplies 6V)], 按ENTER 键。 液晶显示屏显示注意消息。

5. 确认连接的仪器可以供电,按《键或》 键并选择 [OK], 按 ENTER 键。 液晶显示屏变为 MENU - SETUP 画面。

6. 按 ESC 键。

液晶显示屏返回 MENU 画面。

#### 7. 按 ESC 键。

液晶显示屏返回 MEAS 画面。





MENU TUP<u>(1/</u>

ON(Supplies 6V)

MENU SETUP(1/3) RS-POWER CH

ON(Supplies 6V)

loi 

RS

OFF 

/3) SUPPL

# <u>内部时钟的设定</u>

本仪器搭载了内部时钟, 记录测量的日期和时间。 请确认日期和时间, 如果存在偏差, 请输入正确的日期和时间。 此外, 可以更改日期显示格式。 \* 出厂设定 : 出厂时已调整时间,显示格式: YYYY/MM/DD

操作步骤 4.5 MENU ESC BACK-LIGHT SETTING INFO ENTER 2.3 COLOR MODE MEMORY **1**.显示 MEAS 画面时,按 MENU 键。 <MEAS SNGL> UC00 1° cd m<sup>2</sup> Lv 55.40 液晶显示屏变为 MENU 画面。 当液晶显示屏的背光灯熄灭的情况下,在 MEAS 0.4087 Х 画面中使用 BACKLIGHT 键, 背光灯将会亮起。 0.4188 У CMF SPD SYN[Hz] ACC 2° Nrm 59.94 Non MEN D MEAS MEMORY OPTION □ SETUP DARK MEASUREMENT INFORMATION 2. 按 △ 键 或 ● 键 并 选 择 [SETUP], 按 MENU SETUP(2/3) ENTER 键。 D DATA FORM LE1 RS-232C BAUDRATE 液晶显示屏变为 MENU - SETUP 画面。 EXT VOLTAGE DATE TIME [2022/10/19 17:02:01] 设定日期和时间时 **3**-a-1. 按 ▲ 键 或 ♥ 键 并 选 择 [DATE MENL SETUP(2/ TIME DATE TIME], 按ENTER 键。 YYYY / MM / DD 液晶显示屏变为 MENU - SETUP - DATE 2022 / 10 / 19 TIME 画面。 17: 02: 35 (日期时间设定) 画面。



设定篇

# 定期校准提醒设定

设定篇

通过实施定期校准 (每年1次), 可以维持高测量精度。 临近定期校准期限时, 在仪器启动时, 显示提醒用户定期校准的提示信息。 将提醒设定 设为 [ON] 时, 则从起始日期起 11 个月后, 启动时会显示警告信息。

\*出厂设定: 首次启动时,将显示选择提醒设定 [ON] [OFF] 的画面。如果跳过,则为 [OFF] 设定。

\* 设定校准日期、服务实施日期或首次启动日期等作为起始日期。



3. 按△键或♥键并选择
 [CAL REMINDING],按ENTER键.
 液晶显示屏变为MENU - SETUP - CAL
 REMINDING 画面。
 (提醒设定) 画面。

### 4. 按●键或●键并选择 [ON] [OFF]。



液晶显示屏返回 MENU – SETUP 画面。 按 ESC 键,则取消设定,液晶显示屏返回 MENU – SETUP 画面。

| MENU |                               |  |
|------|-------------------------------|--|
|      | SETUP(3/3)                    |  |
|      |                               |  |
|      | I DATE FORMAT<br>[YYYY/MM/DD] |  |
|      | CAL REMINDING                 |  |
|      |                               |  |
|      |                               |  |
|      |                               |  |
|      |                               |  |

NU JP(3/3) MINDING

OFF

#### 6. 按 ESC 键。

液晶显示屏返回 MENU 画面。

### 7. 按 ESC 键。

液晶显示屏返回 MEAS 画面。

# 校准

### 关于校准通道

本仪器共有 11 个校准通道: Ch00~Ch10。

Ch00 用于根据柯尼卡美能达校准标准进行的测量。其校正系数已经设定,不能更改。 可使用本仪器标配的分光辐射度计软件 CS-S30分别为校正通道 Ch01~Ch10 设置以下内容。 有关如何通过软件进行设置的详细信息,请参阅 CS-S30 的使用说明书。

- 用户校准的校正系数
- 校正系数 ID

它们通常用于同一通道的各个色空间 Lvxy、Lvu'v'、LvTΔuv、XYZ,主波长 / 激发纯度和光 谱图。

可以按照以下的步骤切换校准通道。



# 设定篇

#### MENU OPTION(1/2) CAL NO. CAL NO. CAL NO. CAL NO.

NEGATIVE VALUE NO PROCI

[OFF]

[OFF]

DD USER CAL

DD CLOSE UP

DD EXT-ND



| MENU |             |          |                   |  |
|------|-------------|----------|-------------------|--|
|      | OPTION(1/2) |          |                   |  |
|      | 0           | NEGATIVE | VALUE<br>IO PROC] |  |
|      |             | USER CAL | [ 03]             |  |
|      |             | CLOSE UP | [OFF]             |  |
|      |             | EXT-ND   | [OFF]             |  |
|      |             |          |                   |  |



#### 2. 按●键或●键并选择 [OPTION],按 ENTER 键。

液晶显示屏变为 MENU – OPTION 画面。 [USER CAL] 项目中显示当前设定内容。

#### 3. 按●键或●键并选择 [USER CAL],按 ENTER 键。

液晶显示屏变为 MENU – OPTION – USER CAL (校准通道选择) 画面。

显示校准通道以及校正系数 ID (最多 10 个字符)。 Ch00 时,显示为 NON。

#### 4. 按〇键或〇键并选择通道。

按▲键,则数值增大。 按**●**键,则数值减小。 校准通道的选择范围为 OFF、01 ~ 10。

#### 5. 按ENTER 键。

设 定 校 准 通 道, 液 晶 显 示 屏 返 回 MENU – OPTION 画面。

选择了未设定校正系数的校准通道时,无法设定。 按ESC键,则取消设定,液晶显示屏返回 MENU-OPTION画面。

校准通道的设定在关闭电源开关(O)后仍会保存。

#### 6. 按 ESC 键。

液晶显示屏返回 MENU 画面。

#### 7. 按 ESC 键。

液晶显示屏返回 MEAS 画面。

# 主机信息的确认

可以确认本仪器的产品名称、 主机版本、 产品序列号。

#### 操作步骤



**1. 显示 MEAS 画面时,按 MENU 键。** 液晶显示屏变为 **MENU 画面**。

当液晶显示屏的背光灯熄灭的情况下,在 MEAS 画面中使用 **BACKLIGHT** 键,背光灯将会亮起。

# LV CMF SPD SYN[Hz] ACC 2° SF1 60.05 Non MENU MEAS MEMORY OPTION

<MEAS SNGL> UC00 1°

#### 

DARK MEASUREMENT

INFORMATION

### 2. 按▲键或●键并选择 [INFORMATION], 按ENTER键。

液晶显示屏变为**MENU – INFORMATION 画面**。 可以确认产品名称、主机版本、产品序列号。



### **3**. 按 ESC 键。

液晶显示屏返回 MENU 画面。

#### 4. 按 ESC 键。

液晶显示屏返回 MEAS 画面。



# 测量

#### 操作步骤



- **1.** 根据测量目标物和希望测量的内容,决定是 否安装配件。
- 2. 根据测量目标物的尺寸和测量距离,将测量 角度设定为 1°、0.2°或 0.1°。 关于测量角度的设定方法以及测量距离和测量直径,

大丁测重用度的设定力法以及测重距离和测重且径 请参阅测量角度的选择(P.40)。

**3.转动取景器的屈光度调节环,调节屈光度。** 通过取景器观察测量目标物时,请确保光圈(表示测 量区域的黑色圆形)清晰可见。(参阅 P.15)


## **4.转动物镜的对焦环,调节焦点。** 转动对焦环时,请旋松物镜固定螺丝。

通过取景器观察测量目标物时,请确保光圈周围的测 量目标物的影像清晰可见。 请调节成光圈中仅包含测量目标物的被测部分。如果

光圈中包含不属于测量对象的多余部分,将无法正确测量。

进行照度测量时,请转动对焦环,将焦距设为∞。



#### **5.** 显示 MENU 画面、MEMORY 画面时, 按 ESC 键, 切换至 MEAS 画面。 液晶显示屏切换至 MEAS (测量值显示) 画面。

#### 【测量条件的确认】

**显 示 MEAS ( 测 量 值 显 示 ) 画 面** 时, 按 **SETTING INFO** 键,即可查看当前设定的测量条 件。按 **ESC** 键,则返回 **MEAS 画面**。

## 6. 按测量按钮 (MEASURE)。

测量时间较长时,液晶显示屏会显示测量进度,直到 测量结束。

测量时间设定为 [MANUAL] 以外时,会在测量仪内 部确认大致亮度后,再决定测量时间。因此,可能需 要数秒才会显示时间。所显示的时间为从显示的时间 点开始到测量结束位置的大致剩余时间。

根据大致亮度决定的测量时间较短时,不会显示剩余 时间。



测量管



#### 【连续测量】

当按住测量按钮 2 秒或更长时间时,则将进行连续测量。

测量时间较长时,液晶显示屏会显示表示正在测量的标识以及上一个测量值。所显示的时间与单次测量相同,为剩余时间。

测量时间较短时,不会显示表示正在测量的标识, 而会依次更新显示测量值。

在连续测量时按**ESC**键,则中止测量。此时,按 下**ESC**键时正在进行的测量会被中止,并显示在 此之前完成的上一个测量值。在第一次测量的过 程中按下**ESC**键时,将不会显示测量值。

在显示测量值时按**ENTER**键,将显示测量值的 属性,可以确认测量条件。按测量按钮或任意键, 则返回 **MEAS 画面**。

| PRU   | PERTIES(1/3)  |  |  |
|-------|---------------|--|--|
| MEASU | JRE>          |  |  |
| DATE  | [2022/10/11   |  |  |
| SPEED | 14.50.51]     |  |  |
| INTEC | [NORMAL]      |  |  |
|       | 91991 .992ms] |  |  |
| IN-ND |               |  |  |
| SYNC  | LOFFJ         |  |  |
| 00    | [INT 59.94Hz] |  |  |
|       |               |  |  |

# 测量值的保存

本仪器可以保存从 No. 00 到 No. 99 的共 100 个测量值。

## 操作步骤



# 1. 显示 MEAS 画面时,按MEMORY键, 切换至 MEMORY 画面。

液晶显示屏切换至 **MEMORY (显示保存值) 画面**。 显示保存值编号 00。

## 按○键或♥键,选择将测量值保存至哪 个编号。

按▲键,则数值增大。 按**↓**键,则数值减小。

# 3. 按ENTER 键。

所选的编号中已保存了测量值时,将显示确认执 行覆盖的画面。执行覆盖时,选择[OK],取消时, 选择[CANCEL],然后按[ENTER]键。一旦覆盖, 将无法恢复到覆盖前的状态。请在仔细确认保存 值编号后,再执行覆盖。 测量值将被保存到所选的编号中。 按[ESC]键,则取消保存,液晶显示屏返回

#### MEAS 画面。

| <men<br><mea< th=""><th>10RYX</th><th>&gt;</th><th></th></mea<></men<br> | 10RYX               | >                            |            |
|--------------------------------------------------------------------------|---------------------|------------------------------|------------|
| Lv                                                                       | 5                   | 54.22                        | cd m2      |
| ×                                                                        | 0.                  | 4045                         |            |
| v                                                                        | 0.                  | 4073                         |            |
| <pre><men<br>Lv<br/>x<br/>v</men<br></pre>                               | 10RY 0.<br>0.<br>0. | 00><br>7.285<br>1700<br>0938 | cd∕m²      |
|                                                                          |                     |                              |            |
| CMF<br>2°                                                                | SPD<br>Nrm          | SYN[Hz]<br>59.94             | ACC<br>Non |

测量篇



| KMEN<br>KMEA<br>Lv<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10RY<br>SURE<br>!<br>0.<br>0.           | ><br>54.22<br>.4045<br>.4073 | cd/m2      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------|------------|
| <pre></pre> <pre>&lt;</pre> | MEMORY 10><br>54.22<br>0.4045<br>0.4045 |                              | cd m2      |
| CMF<br>2°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SPD<br>Nrm                              | SYN[Hz]<br>59.94             | ACC<br>Non |

可按以下步骤,显示保存值的属性(测量条件)。





# **1. 显示 MEAS 画面时,按 MENU 键。** 液晶显示屏变为 **MENU 画面**。

当液晶显示屏的背光灯熄灭的情况下,在 MEAS 画面中使用 **BACKLIGHT** 键,背光灯将会亮起。

|   | <mea< th=""><th>S SN</th><th>GL&gt;</th><th>UC00</th><th>1°</th></mea<> | S SN       | GL>       | UC00         | 1°                   |
|---|-------------------------------------------------------------------------|------------|-----------|--------------|----------------------|
|   | Lv                                                                      | !          | 55.9      | 1            | cd<br>m <sup>2</sup> |
|   | х                                                                       | 0.         | 4043      | 3            |                      |
|   | у                                                                       | 0.         | 407       | 3            |                      |
|   | CMF<br>2°                                                               | SPD<br>Nrm | SYN<br>59 | I[Hz]<br>.94 | ACC<br>Non           |
| 1 |                                                                         |            |           |              |                      |

|  | MENU             |
|--|------------------|
|  | MEAS             |
|  | MEMORY           |
|  | OPTION           |
|  | SETUP            |
|  | DARK MEASUREMENT |
|  |                  |

#### INFORMATION





# 2. 按▲键或●键并选择 [MEMORY], 按 ENTER 键。

液晶显示屏变为 MENU – MEMORY 画面。

# 3. 按●键或●键并选择 [PROPERTIES], 按 ENTER 键。

液晶显示屏变为 MENU – MEMORY – PROPERTIES (保存值的测量条件确认) 画面。 显示保存值编号 00。

# 4. 如要显示其他编号的保存值,按 键,更改保存值编号。 显示所选编号的保存值属性,可确认测量条件。 按●键,则数值增大。 长按则会连续变化。 按◆键,则数值减小。 长按则会连续变化。 按◆键,可以翻页查看属性,确认测量条件。



# 5. 按 ESC 键。

液晶显示屏返回 MENU – MEMORY 画面。

# 6. 按 ESC 键。

液晶显示屏返回 MENU 画面。

# 7. 按 ESC 键。

液晶显示屏返回 MEAS 画面。

# 保存值的确认

可按以下步骤,查看已保存的测量值

#### 操作步骤



 显示 MEAS 画面时,按 MEMORY 键, 切换至 MEMORY 画面。 液晶显示屏切换至 MEMORY (显示保存值) 画面。 显示保存值编号 00。

## 按○键或♥键,可确认各编号中保存的 测量值。

按**○**键,则数值增大。 按**○**键,则数值减小。 

 ⟨MEMORY⟩

 ⟨MEASURE⟩

 Lv
 54.22
 cdm²

 x
 0.4045
 y

 y
 0.4073

 ⟨MEMORY 00⟩

 Lv
 7.285
 cdm²

 x
 0.1700

 y
 0.0938

 CMF
 SPD
 SYN[Hz]
 ACC

 2°
 Nrm
 59.94
 Non

| 101(1)              |                                                        |                                                                                            |  |
|---------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------|--|
| <measure></measure> |                                                        |                                                                                            |  |
| !                   | 54.22                                                  | cd m2                                                                                      |  |
| 0.                  | 4045                                                   |                                                                                            |  |
| 0.                  | 4073                                                   |                                                                                            |  |
|                     |                                                        |                                                                                            |  |
|                     |                                                        |                                                                                            |  |
| 10RY                | 10>                                                    |                                                                                            |  |
|                     | 54.22                                                  | cg/m <sup>2</sup>                                                                          |  |
| 0.                  | 4045                                                   |                                                                                            |  |
| 0.                  | 4073                                                   |                                                                                            |  |
|                     |                                                        |                                                                                            |  |
| SDD                 | CVN[H-]                                                | ACC                                                                                        |  |
| SFD                 | STINUTIZJ                                              | ACC                                                                                        |  |
|                     | IORY<br>0.<br>10RY<br>0.<br>0.<br>0.<br>0.<br>0.<br>0. | SURE><br>54.22<br>0.4045<br>0.4073<br>40RY 10><br>54.22<br>0.4045<br>0.4073<br>SPD SYN[Hz] |  |

# 3. 按 ESC 键。

液晶显示屏返回 MEAS 画面。

# 保存值的删除

可按以下步骤,删除已保存的测量值



#### **1. 显示 MEAS 画面时,按 MENU键**。 液晶显示屏变为 MENU 画面。

当液晶显示屏的背光灯熄灭的情况下,在 MEAS 画面中使用 **BACKLIGHT** 键,背光灯将会亮起。

| <meas< th=""><th>5 SN</th><th>GL&gt;</th><th>UC00</th><th>) 1°</th></meas<> | 5 SN       | GL>       | UC00         | ) 1°                 |
|-----------------------------------------------------------------------------|------------|-----------|--------------|----------------------|
| Lv                                                                          | !          | 57.1      | 2            | cd<br>m <sup>2</sup> |
| x                                                                           | 0.         | 404       | 5            |                      |
| у                                                                           | 0.         | 408       | 5            |                      |
| CMF<br>2°                                                                   | SPD<br>Nrm | SYN<br>59 | I[Hz]<br>.94 | ACC<br>Non           |
|                                                                             |            |           |              |                      |

| MENU             |  |  |  |
|------------------|--|--|--|
| MEAS             |  |  |  |
| MEMORY           |  |  |  |
| OPTION           |  |  |  |
| SETUP            |  |  |  |
| DARK MEASUREMENT |  |  |  |
| INFORMATION      |  |  |  |

# 2. 按▲键或●键并选择 [MEMORY], 按 ENTER键。

液晶显示屏变为 MENU – MEMORY 画面。

## 3. 按 <sup>●</sup> 键或 <sup>●</sup> 键,选择 [DELETE],按 ENTER 键。

液 晶 显 示 屏 变 为 **MENU – MEMORY – MEM.DELETE (保存值的删除) 画面**。 显示保存值编号 00。





测量質

### **4.** 按▲键或●键并选择要删除的保存值的 编号。

按▲键,则数值增大。长按则会连续变化。 No. 99 之后将显示 [ALL]。 按▼键,则数值减小。长按则会连续变化。 No. 00 之后将显示 [ALL]。 删除保存值后,将无法恢复到删除前的状态。 请在仔细确认保存值编号后,再执行删除。



逐个删除保存值时

5-a-1. 逐个删除保存值时选择要删除的保存 值的编号,按ENTER键。 液晶显示屏变为MENU-MEMORY-MEM.DELETE-DELETE (确认删除) 画面。

5-a-2. 按●键,选择[OK],按ENTER]键。 保存的测量值被删除,液晶显示屏返回 MENU – MEMORY – MEM.DELETE 画面。 选择[CANCEL],并按ENTER]键或按





#### 5-a-3. 按ESC键。

液晶显示屏返回 MENU – MEMORY 画面。

ESC 键,则取消删除,液晶显示屏返回

MENU – MEMORY – MEM.DELETE 画面。

批量删除全部保存值时

5-b-1. 选择 ALL, 按 ENTER 键。 液晶显示屏变为 MENU – MEMORY – MEM.DELETE – DELETE (确认删除) 画面。

5-b-2. 按◆键,选择[OK],按ENTER]键。 所有保存值被删除,液晶显示屏返回 MENU - MEMORY - MEM.DELETE 画面。 选择[CANCEL],并按ENTER]键或按ESC 键,则取消删除所有保存值,液晶显示屏返回 MENU - MEMORY - MEM.DELETE 画面。





测量篇

# 6. 按 ESC 键。

液晶显示屏返回 MENU – MEMORY 画面。

# 7. 按 ESC 键。

液晶显示屏返回 MENU 画面。

# 8. 按 ESC 键。

液晶显示屏返回 MEAS 画面。



# <u>与电脑的连接</u>

本仪器可以与电脑进行双向通信。与电脑通信时,需要使用附带的 USB 数据线 (2m) CS-A32 或可选配件 RS-232C 串口线 (IF-A37、38)。

**备注** 无法同时使用 USB 通信和 RS 通信。

## 使用 USB 数据线时

USB 数据线支持热插拔。尽管如此,我们还是建议您插拔 USB 数据线前先关闭电源。 **备注** / RS-232C 连接器部分请务必盖上盖子。否则可能因静电影响而发生误动作。

#### 操作步骤

- **1.** 将电源开关切为 OFF (○侧)。
- 2. 将 USB 数据线连接至主机的 USB 连接器。
- 3. 插入到底,确认是否已确实连接。

本仪器的通信接口符合 USB2.0。

拔下 USB 数据线时,请握住 USB 数据线的插头将其拔出。请勿握住电线拔出。 请对准 USB 数据线的连接器插入口形状进行插入。

将本仪器连接至电脑时,需要安装专用的 USB 驱动程序。USB 驱动程序附带于标准配件分 光辐射计用软件 CS-S30。关于在电脑中安装 USB 驱动程序的方法,请参阅 CS-S30 的安装 指南。



#### 使用 RS-232C 串口线时

将电源开关切为 ON (|) 之前,请将 RS-232C 串口线 (D-sub 9 针) 连接至 RS-232C 连接器。 本仪器的 RS-232C 连接器采用 D-sub9 针公插头。请使用交叉电缆。

#### 操作步骤

- **1.** 将电源开关切为 OFF (〇侧)。
- 2. 使用 RS-232C 串口线连接主机和电脑。
- 3. 确实固定,确认 RS-232C 连接器左右的螺 丝已确实连接。



拔下 RS-232C 串口线时,请将电源开关切为 OFF(〇)后,握住 RS-232C 串口线的插头将 其拔出。请勿握住电线拔出。

| 波特率  | 1200/2400/4800/9600/19200/38400/57600/115200/230400/ |
|------|------------------------------------------------------|
|      | 460800/921600                                        |
| 数据长度 | 8位                                                   |
| 奇偶校验 | 无                                                    |
| 停止位  | 1位                                                   |
| 流控制  | 软件 (RTS/CTS)                                         |

针脚排列

设备端



## 使用 RS-232C Bluetooth 转换接头时

通过使用市售的 RS-232C Bluetooth 转换接头,可以将本仪器与搭载 Bluetooth 的电脑连 接。

将电源开关切为 ON(1)之前, 请将 RS-232C Bluetooth 转换接头(D-sub 9 针) 连接至 RS-232C 连接器。

#### 操作步骤

- **1.** 将电源开关切为 OFF (○侧)。
- 2. 将 RS-232C Bluetooth 转换接头连接至主机的 RS-232C 连接器。
- 3. 确实固定,确认 RS-232C 连接器左右的螺丝已确实连接。
- 4. 将从主机向 RS-232C Bluetooth 转换接头供电设为开启。 关于将供电设为开启的方法,请参阅 RS-232C 供电的设定 (P.60)。 关于与电脑通信的设定,请参阅 RS-232C Bluetooth 转换接头的使用说明书。



请确认可否用作所使用的设备的供给电源。如果向不符合规格的设备供电,可 能引发故障,因此请切勿这样做。

<供给电源> 输出电压: 5.62~ 6.14V、输出电流: 最大 150mA

# 远程模式

将本仪器与电脑连接,并从电脑向本仪器发送指令,即可变为远程模式。

使用电脑控制本仪器时,液晶显示屏将显示"REMOTE MODE"。显示该消息时,无法进行下述以外的本仪器的按键操作。

- 按测量按钮,则执行测量,测量值被传输至电脑。(从电脑向本仪器发送指令,处于测量按钮有效模式时。请使用以下的分光辐射计用软件。)
- 按 ESC 键,则退出远程模式。

使用电脑控制本仪器时,请使用标准配件分光辐射计用软件 CS-S30。关于 CS-S30 的规格和使用方法,请参阅 CS-S30 的使用说明书。

如果想通过专用程序从电脑控制本仪器,请从以下 URL 的本公司网站下载查阅通信规格书 等资料。

<u>https://www.konicaminolta.com/instruments/download/software/display/index.html</u> (此处记载的 URL 根据情况可能发生更改,恕不另行通知。) (无法显示目标页面时,请在"CS-3000""下载"中搜索。)



通信篇

**备注** 通过 CS-S30 控制本仪器时,请使用 USB 数据线。



# 测量原理

通过物镜的光能中,从测量区域放出的光会通过设在光圈透镜中心的通孔,射入光纤中。其 余光被光圈透镜引导至取景器光学系统。因此,在观察取景器时,与测量区域相同大小的部 分呈黑色圆形。

射入光纤的光通过反复进行全内反射, 被混合至基本均匀。然后通过准直透镜, 作为平行光 被引导至平面衍射光栅。

被平面衍射光栅反射的各种波长的光通过成像镜头按波长分别成像,其位置上分布着阵列状的受光元件。

如上所述, 检测到的各波长的能量会通过 A/D 转换器进行 A/D 转换。然后基于该结果, 在运算部计算分光辐射亮度、色度等数值。

#### <u>传感器部分</u>

传感器使用包含 512 个元件的光电二极管阵列,不管环境温度如何变化,通过使用半导体冷却器,保证阵列的存放温度稳定不变。以此来降低传感器带有的暗电流成分,提高 S/N 比,从而实现低亮度测量。



# <u>关于暗电流测量</u>

每次测量都由"光测量"和"暗电流测量"组成。 "光测量"是在被测物发出的光照射传感器的状态下进行的。 "暗电流测量"为了测量暗电流,在没有光照射传感器的状态下进行。 "光测量"得到的数值减去"暗电流测量"得到的数值后,即为最终测量结果。以此去除传感器 自身带有的暗电流的影响,实现高精度。

#### "暗电流测量"模式

本仪器有以下2种"暗电流测量"模式。

[STANDARD DARK] 每次测量时都进行暗电流测量的测量模式 [INTELLIGENT DARK] 在跳过暗电流测量的同时,使用来自传感器的补偿信息补偿暗电 流测量值的测量模式 在维持高精度的前提下,缩短测量时间。

\* 出厂设定: [NORMAL、FAST、MANUAL、MULTI-NORMAL、MULTI-FAST] STANDARD DARK [SUPER-FAST1、SUPER-FAST2] INTELLIGENT DARK

#### ■关于 [INTELLIGENT DARK] 模式下的测量

如果在执行"暗电流测量"后更改了测量条件, 请重新进行"暗电流测量"。 测量时, 如果满足以下任意条件, 画面中将显示"提示信息", 并中止测量。

- ① 上一次"暗电流测量"在启动后 20 分钟内进行时 [注意: Warm-up not completed]
- ② 距离上一次"暗电流测量"已超过 8 小时时 [注意: Long time after last DARK]
- ③ 较上一次"暗电流测量"时有6℃以上的温差时 [警告: Temperature changed

#### after last DARK]

显示提示信息时, 建议执行"暗电流测量", 重新开始测量。 也可选择忽略提示信息, 继续测量。选择忽略提示信息时, 将适用上一次"暗电流测量" 的值。

#### 进行"暗电流测量"





| 显示 MEAS 画面时,按 MENU 键。             |
|-----------------------------------|
| 液晶显示屏变为 <b>MENU 画面</b> 。          |
| 当液晶显示屏的背光灯熄灭的情况下,在 MEAS           |
| 画面中使用 <b>BACKLIGHT</b> 键,背光灯将会亮起。 |

LV CMF SPD SYN[Hz] ACC 2° Nrm 59.94 Non MENU 0 MEAS

<MEAS SNGL> UC00 1°

MEMORY
OPTION
SETUP
DARK MEASUREMENT
INFORMATION





## 2. 按▲键或♥键并选择 [DARK MEASUREMENT],按ENTER 键。

#### 液晶显示屏变为 MENU – DARK MEASUREMENT 画面。

可以查看上一次"暗电流测量"的日期和时间。

# **3**. 按测量按钮 (MEASURE)。

进行"暗电流测量"。测量后,将显示测量日期和 时间。

# 4. 按 ESC 键。

液晶显示屏返回 MENU 画面。

# 5. 按 ESC 键。

液晶显示屏返回 MEAS 画面。

# <u>关于 L<sub>v</sub>T<sub>cp</sub>∆uv</u>

将本仪器的色空间模式设为 L<sub>v</sub>T<sub>cp</sub>Δuv 后,可以获得以下测量值。

- L<sub>v</sub> : 亮度
- T<sub>cp</sub> : 相关色温
- Δuv : 与黑体轨迹的色差

在 L<sub>v</sub>T<sub>cp</sub>Δuv 中, 用 L<sub>v</sub> 表示亮度, 用 T<sub>cp</sub> 和 Δuv 表示颜色。

#### <关于相关色温 T<sub>cp</sub> 和与黑体轨迹的色差 △uv >

拥有与某种光相同的色度坐标的黑体(理想辐射体)的温度称作这种光的色温,只有黑体轨 迹上的颜色可以用色温表示。

因此,为了扩展色温的概念,会使用相关色温(Correlated Color Temperature)来表示稍微偏离黑体轨迹的颜色。

某种颜色位于等色温线上时,将该等色温线与黑体轨迹交叉的点的色温称作这种颜色的相关 色温。等色温线是指表示视觉上与黑体轨迹上的色温接近的颜色的集合的色度坐标上的线。

但是,由于一条等色温线上的颜色均以相同的相关色温表示,所以无法仅用相关色温来表示 颜色。因此,为了表示颜色,需要搭配使用表示与相关色温T的位置关系的偏差Δuv。

此外, Auv的符号在位于黑体轨迹上侧时用"+"表示, 位于下侧时用"-"表示。



解说曾

# <u>关于特征波长和激发纯度</u>

在下面的(x,y)色度图中,曲线 VS<sub>c</sub>SR 为光谱轨迹,点 N 为白色点。 色度点位于光谱轨迹、直线 VN 和 NR 围成的区域中的颜色称作光谱色,色度点位于纯紫轨 迹 VR 和白色点 N 构成的三角形 NVR 内部的颜色称作非光谱色。

#### <光谱色的特征波长和激发纯度>

测量得到的色度点为 C 时,将 NC 的延长线与光谱轨迹(曲线 VS<sub>c</sub>SR)的交点 S 对应的波长称作特征波长(dominant wavelength),用符号 λ<sub>d</sub> 表示。 将直线 NC 的长度与 NS 长度之比称作色刺激 C 的激发纯度,用符号 p<sub>e</sub> 表示。

#### <非光谱色的互补色特征波长>

测量得到的色度点为 C'时,NC'往 C'方向上的延长线不与光谱轨迹相交,而与纯紫轨迹相交。 这种情况下,将 NC'往相反的 N 方向上的延长线与光谱轨迹的交点 S<sub>c</sub> 对应的波长称作互补 色特征波长(complementary wavelength),用符号  $\lambda_c$  表示。 将直线 NC'的延长线与 VR(纯紫轨迹)的交点用 S'表示,则将 NC'与 NS'之比称作色刺激 C' 的激发纯度,用符号 p'<sub>v</sub> 表示。

如果  $(x_n, y_n)$  表示点 N 的色度坐标、  $(x_c, y_c)$  表示点 C 的色度坐标、  $(x_{\lambda}, y_{\lambda})$  表示点 S 的 色度坐标、  $(x_{c'}, y_{c'})$  表示点 C 的色度坐标、  $(x_p, y_p)$  表示点 P 的色度坐标, 则

光谱色的激发纯度

$$p_e = \ \frac{x_c - x_n}{x_\lambda - x_n} \ = \ \frac{y_c - y_n}{y_\lambda - y_n}$$

非光谱色的激发纯度

解说管

$$p_{e}' = \frac{x_{c}' - x_{n}}{x_{p} - x_{n}} = \frac{y_{c}' - y_{n}}{y_{p} - y_{n}}$$



#### • CS-3000HDR

(单位: mm)







解说篇

• CS-3000

(单位: mm)









解说篇

#### • CS-2000Plus

(单位: mm)







解说篇

# 关于错误信息

如果在进行操作后本仪器未正常动作,液晶显示屏将显示错误信息。错误信息的种类、错误的原因(内容)及处理方法请参见下表。

|   | 错误信息                                    | 原因 (内容)                                                 | 处理方法                                                                                                                                                                             |
|---|-----------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | OVER                                    | 测量目标物的亮度超出可测<br>量范围。                                    | <ul> <li>请使用 ND 滤镜重新测量。</li> <li>请缩小测量直径,重新测量。</li> <li>如果现象仍未改善,请咨询"服务<br/>指南"中记载的咨询窗口。</li> </ul>                                                                              |
|   |                                         | 测量目标物的闪烁频率较<br>大。                                       | ·请在 INT SYNC 模式下设定闪烁周<br>期,或在 EXT SYNC 模式下输入闪<br>烁的周期信号。                                                                                                                         |
|   |                                         | 对于同步设定, 积分时间设<br>定太短。                                   | · 缩短同步时间。<br>· 设为非同步设定。<br>· 将测量速度设为较慢的模式。                                                                                                                                       |
| 2 | SYNC ERROR                              | 检测不到 EXT SYNC 模式的<br>输入信号。                              | <ul> <li>请输入 CMOS 输入电平 (0.8/1.2/<br/>1.8/3.3/5.0V)的垂直同步信号。</li> <li>请令 EXT VOLTAGE 的设定电压符合<br/>垂直同步信号的等级。不清楚垂直<br/>同步信号的等级时,请增减 EXT<br/>VOLTAGE 的设定电压,重新测量。</li> </ul>           |
|   |                                         | EXT SYNC 模式的输入信号超<br>过 200Hz。                           | ·请在 INT SYNC 模式下设定用输入信<br>号的频率除以整数后的值,重新测<br>量。                                                                                                                                  |
|   |                                         | EXT SYNC 模式的输入信号低<br>于 0.5Hz。                           | <ul> <li>请在 INT SYNC 模式下设定输入信号频率的整数倍的值,并在 MULTI<br/>INTEG-NORMAL 模式或 MULTI<br/>INTEG-FAST 模式下进行测量。</li> <li>请在 INT SYNC 模式下设定输入信号<br/>周期的整数倍的值,并在 MANUAL<br/>模式下进行测量。</li> </ul> |
| 3 | DETECTION<br>ERROR                      | 显示器的周期性光亮波动较<br>小, 检测不到发光频率。<br>或者发光频率超出可检测范<br>围。      | <ul> <li>请更改显示器的亮度,重新检测频率。</li> <li>·对未能检测到频率,无法掌握频率的显示器进行测量时,请参考同步方法的设定(P.31)进行测量。</li> </ul>                                                                                   |
| 4 | MEASURING<br>ANGLE<br>SELECTOR<br>ERROR | 在未正确切换测量角度的状<br>态下执行了测量, 或者在测<br>量过程中测量角度被更改。           | <ul> <li>·请切换测量角度,重新测量。</li> <li>·如果现象仍未改善,请咨询"服务指南"中记载的咨询窗口。</li> </ul>                                                                                                         |
| 5 | TEMPERATURE<br>ERROR                    | 测量仪周围温度过高, 传感<br>器内部温度异常。(在连续<br>测量过程中发生时, 将继续<br>连续测量) | ·请降低周围环境,直到本仪器能冷<br>却至指定温度。                                                                                                                                                      |
| 6 | MEMORY ERROR                            | 向存储器写入 / 读入数据时发<br>生异常。                                 | ·请重新打开电源开关。<br>·如果现象仍未改善,请咨询"服务<br>指南"中记载的咨询窗口。                                                                                                                                  |
| 7 | NO DATA                                 | 所使用的校准通道或配件的<br>数据未经注册。                                 | ·请对校准通道注册校准系数。<br>·请注册所用配件的校准系数。                                                                                                                                                 |

|   | 错误信息                                                        | 原因 (内容)                                | 处理方法                                            |
|---|-------------------------------------------------------------|----------------------------------------|-------------------------------------------------|
| 8 | Cannot be<br>enabled when<br>other attachment<br>is enabled | 试图采用组合安装 ND 滤镜、<br>近摄镜头、 照度适配器的设<br>定。 | • ND 滤镜、近摄镜头、照度适配器仅<br>可选择安装其中一个。(无法组合<br>使用)   |
| 9 | HARDWARE<br>ERROR                                           | 本仪器的结构、 零件、 程序<br>发生异常。                | ·请重新打开电源开关。<br>·如果现象仍未改善,请咨询"服务<br>指南"中记载的咨询窗口。 |

# 关于提示信息

进行操作时,本仪器可能在液晶显示屏中显示提示信息,并停止动作。 提示信息的类型、原因(说明)及处理方法请参见下表。

|   | 提示信息                                      | 原因 (内容)                                                      | 处理方法                                                                                           |
|---|-------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 1 | Frequency not<br>detected                 | 显示器的周期性光亮波动较<br>小, 检测不到发光频率。<br>或者发光频率超出可检测范<br>围。           | <ul> <li>请更改显示器的亮度,重新检测频率。</li> <li>·对未能检测到频率,无法掌握频率的显示器进行测量时,请参考同步方法的设定(P.31)进行测量。</li> </ul> |
| 2 | Warm-up not<br>completed                  | 执行 INTELLIGENT DARK 测量时, 上一次 "暗电流测量"<br>是在启动后 20 分钟内进行<br>的。 | 建议执行"暗电流测量"。<br>也可选择忽略注意消息。选择忽略注<br>意消息时,将适用上一次"暗电流测量"<br>的值。<br>关于暗电流测量,请参阅(P.89)。            |
| 3 | Long time after<br>last DARK              | 执行INTELLIGENT DARK测量时, 距离上一次"暗电流测量"已超过8小时。                   | 同上                                                                                             |
| 4 | Temperature<br>changed after<br>last DARK | 执 行 INTELLIGENT DARK 测<br>量时,较上一次"暗电流测量"<br>时有 6℃以上的温差。      | 同上                                                                                             |

# 故障排查

本仪器发生异常时,请按下表所示进行相应的处理。如果未正常工作,可能是本仪器出现了 故障,请联系"服务指南"中记载的咨询窗口。联系时,请告知故障 No. 和主机版本。关于主 机版本的确认方法,请参阅 P.90。

| 故障<br>No. | 状态                         | 请确认                    | 请执行                                                               | 参阅<br>页码  |
|-----------|----------------------------|------------------------|-------------------------------------------------------------------|-----------|
| 1         | 接通电源后, 液晶显示<br>屏不显示内容。     | AC 适配器是否已插入插<br>座?     | 请连接 AC 适配器。                                                       | 21        |
|           |                            | AC 适配器是否已与主机<br>连接?    | 请连接 AC 适配器。                                                       | 21        |
|           |                            | 是否连接了错误的 AC 适<br>配器?   | AC 适配器 (包括电源线) 请务<br>必使用本公司指定的标准配件或<br>可选配件AC 适配器 (AC-<br>A312G)。 | 21        |
|           |                            | AC 电源是否在额定范围内?         | 请在额定电压 ±10% 的范围内使用。                                               | 21        |
| 2         | 观察取景器时, 视野昏<br>暗, 看不到任何东西。 | 物镜的镜头盖是否未取<br>下?       | 请取下镜头盖。                                                           | 8         |
|           |                            | 物镜上是否安装了 ND 滤<br>镜?    | ND 滤镜请在测量高亮度的测量目标物时使用。                                            | 9、<br>52  |
|           |                            | 取景器上是否安装了 ND<br>目镜滤光镜? | ND 目镜滤光镜请在测量高亮度的<br>测量目标物时使用。                                     | 9、<br>52  |
| 3         | 液晶显示屏不显示内<br>容。            | 是否将背光灯设为了熄<br>灭?       | 请按 <b>BACKLIGHT</b> 键 / 令背光<br>灯亮起。                               | 14、<br>56 |
|           |                            | 是否将测量时的背光灯设<br>为了熄灭?   | 请通过菜单操作将测量时的背光<br>灯设为亮灯。                                          | 56        |
| 4         | 按键操作无效。                    | 是否设为了远程模式?             | 请按 <b>ESC</b> 键, 退出远程模式。                                          | 85        |
|           |                            | 是否按下了不工作的键?            | 请按下正确的键。                                                          |           |
| 5         | 按下测量按钮后未进行<br>测量。          | 是否处于 MEAS 画面以<br>外的画面? | 请在 MEAS 画面中进行测量。                                                  | 71        |
| 6         | 标准色的输入值与设定<br>后显示的值不同。     |                        | 可能因运算误差出现 1digit 的差异。                                             |           |
| 7         | 不显示测量值。                    | 是否有数据?                 | 请进行测量。                                                            | 70        |
|           |                            | 色空间模式是否设为了色<br>温?      | 大幅偏离黑体轨迹时, 色温将显<br>示为。 请用其他色空间模式显<br>示并确认。                        | 48        |
|           |                            | 是否中断了测量?               | 请重新测量。                                                            | 70        |

| 故障<br>No. | 状态                       | 请确认                     | 请执行                                                                  | 参阅<br>页码         |
|-----------|--------------------------|-------------------------|----------------------------------------------------------------------|------------------|
| 8         | 测量值存在波动。                 | 测量目标物是否稳定?              | 请在测量目标物稳定的状态下进<br>行测量。                                               |                  |
|           |                          | 测量目标物是否亮度较<br>低?        | 测量低亮度的测量目标物时, x,y<br>的重复性会变差。                                        |                  |
|           |                          |                         | 当测量角度为0.2°、0.1°时,<br>会明显变差。                                          | 70.<br>26        |
|           |                          |                         | 测量时间较短时, 会明显变差。<br>请延长测量时间进行测量。                                      |                  |
|           |                          | 测量显示器时, 测量同<br>步频率是否合适? | 请设定合适的测量同步频率进行<br>测量。                                                | 21               |
|           |                          |                         | 请使用MULTI INTEG-NORMAL<br>模式或MULTI INTEG-FAST模式。                      | 31、<br>28        |
|           |                          |                         | 请在 EXT SYNC 模式下测量。                                                   |                  |
|           |                          | 周围的温湿度是否大幅变<br>化?       | 请在温湿度无变化的环境中测<br>量。                                                  | 3                |
|           |                          | 是否在启动后立即测量?             | 将电源开关切为 ON 后, 请至少<br>预热 20 分钟。                                       | 23               |
| 9         | 显示的测量值不正常。               | 物镜是否存在脏污?               | 请用柔软的干布或镜头清洁纸将<br>脏污擦拭干净。                                            | 5                |
|           |                          | 可能未正确进行用户校<br>准。        | 请在不进行用户校准的情况下<br>(将校准通道设为00 (OFF))<br>进行确认。                          | 66               |
|           |                          | 校准通道是否正确?               | 请选择采用亮度及色度与测量目<br>标物相近的光源的校准通道。                                      | 66               |
|           |                          | 是否安装了近摄镜头?              | 请根据近摄镜头的安装情况选择<br>镜头类型的设定。                                           | 50、<br>70        |
|           |                          | 是否安装了 ND 滤镜?            | 请根据安装的 ND 滤镜选择 ND<br>滤镜的设定。                                          | 52               |
|           |                          | 是否对焦在测量目标物<br>上?        | 请在调节屈光度后调节焦点。                                                        | 13、<br>15、<br>71 |
| 10        | 测量中断, 未在设定的<br>测量时间完成测量。 | 测量目标物是否亮度较<br>高?        | 测量高亮度的测量目标物时, 可<br>能超出当前测量设定的测量上<br>限, 令传感器发生饱和。                     | 52               |
|           |                          |                         | 请使用 ND 滤镜。                                                           |                  |
| 11        | 测量所用的时间与显示<br>的时间存在差异。   |                         | 显示的时间为在该时间点的剩余<br>测量时间。 根据测量时间的模式<br>设定的不同,可能会有测量时间<br>与显示的时间不一致的情况。 | 26               |
| 12        | 液晶显示屏的测量值显<br>示消失。       | 供电是否稳定?                 | 请连接稳定的电源,并确实插入<br>AC 适配器的插头。                                         | 21               |
|           |                          | 是否中断了测量?                | 开始连续测量时, 请确实按下测<br>量按钮, 并注意不要按到 <b>ESC</b><br>键。                     | 72               |

| 故障<br>No. | 状态                               | 请确认                                      | 请执行                                                                             | 参阅<br>页码 |
|-----------|----------------------------------|------------------------------------------|---------------------------------------------------------------------------------|----------|
| 13        | USB 通信时<br>无法用电脑读取本仪器            | USB 数据线是否已确实<br>连接?                      | 请确实连接本仪器与电脑。                                                                    | 82       |
|           | 输出的数据。<br>  天法从由脑向本心哭检           | USB 数据线是否断线?                             | 请更换 USB 数据线。                                                                    |          |
|           | 入指令或数据。                          | 是否已退出远程模式?                               | 请从电脑向本仪器发送连接指<br>令, 设为远程模式。请使用标<br>准配件分光辐射计用软件 CS-<br>S30。                      | 85       |
|           |                                  | 创建的程序是否正确?                               | 请参考通信规格书进行确认。 请<br>使用标准配件分光辐射计用软件<br>CS-S30。                                    |          |
|           |                                  | 是否使用了 RS 通信?                             | 无法同时使用 RS 通信和 USB 通<br>信。请按[ <b>ESC</b> ]键, 退出远程模<br>式。然后请仅使用 USB 通信重<br>新进行通信。 |          |
| 14        | 本仪器发生了包括故障<br>No.1~13在内的误动<br>作。 | 是否碰到了 RS-232C 连<br>接器部分?此外, 是否<br>盖上了盖子? | 请重新接通电源,重启本仪器。<br>如果碰到 RS-232C 连接器部分,可能因静电影响而发生误动作,<br>所以请务必盖上盖子。               | 82       |
| 15        | RS 通信时<br>无法用电脑读取本仪器             | RS 串口线是否已确实连接?                           | 请确实连接本仪器与电脑。                                                                    | 83       |
|           | 输出的数据。<br>  玉法川中脑向本心器检           | RS 串口线是否断线?                              | 请更换 RS 串口线。                                                                     |          |
|           | 九云风电脑凹乎仅器制<br>入指令或数据。            | 是否已退出远程模式?                               | 请从电脑向本仪器发送连接指<br>令, 设为远程模式。                                                     |          |
|           |                                  | 创建的程序是否正确?                               | 请参考通信规格书进行确认。                                                                   |          |
|           |                                  | 是否使用了 USB 通信?                            | 无法同时使用 RS 通信和 USB 通<br>信。请按[ <b>ESC</b> ]键,退出远程模<br>式。然后请仅使用 RS 通信重新<br>进行通信。   |          |
| 16        | 反复显示同一错误信<br>息。                  | 请确认错误信息的处理方<br>法。                        | 如果现象仍未改善, 请咨询"服务指南"中记载的咨询窗口。                                                    |          |

# 设定初始化

可按以下步骤,将已设定的各种测量条件初始化为出厂设定。 出厂设定如下所示。

| * 同步方法       | : | INT SYNC 59.94Hz  | * 测量速度 | : | NORMAL        |
|--------------|---|-------------------|--------|---|---------------|
| * 颜色匹配函数     | : | CIE1931 (2°)      |        |   | IN-ND: AUTO   |
| * 色空间模式      | : | L <sub>v</sub> xy | *显示格式  | : | ****.**** [F] |
| * 配件 (ACC)   | : | NONE              |        |   |               |
| * 测量时的背光灯    | : | 亮灯                |        |   |               |
| *RS-232C 通信用 | : | 115200bps         |        |   |               |

\*RS-232C 通信用 波特率

#### 操作步骤



 电源开关处于 OFF (○侧)时,同时按 住MEMORY键、 ●键、 ●键,将电源 开关切为 ON (|例)。
 液晶显示屏显示初始画面,约5秒后变为 INITIALIZE SETTINGS (确认设定初始化)画面。
 请同时按住MEMORY 键、●键、●键,直至 显示 INITIALIZE SETTINGS 画面。



## 2. 按<键,选择 [OK],按 ENTER 键。 已设定的各种测量条件被初始化,液晶显示屏变 为 MEAS 画面。



# 主要规格

| 型号                                         | 分光辐射亮度计 CS-3000HDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |  |  |  |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|
| 测量波长范围                                     | 380 ~ 780nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |  |  |  |
| 波长分辨率                                      | 0.9nm/pixel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |  |  |  |
| 显示波长间隔                                     | 1.0nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |  |  |
| 波长精度                                       | ±0.3nm (校准波长 Hg-Cd 光源: 435.8nm、 546.1nm、 643.8nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |  |  |  |
| 光谱波长宽度                                     | 5nm 以下 (半波宽)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |  |  |  |
| 测量角度<br>(电动切换式)                            | 1° 0.2° 0.1°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |  |  |  |
| 精度保证亮度范围<br>(A 光源)                         | $0.0001 \sim 100,000 \text{cd/m}^2$ $0.0025 \sim 2,500,000 \text{cd/m}^2$ $0.01 \sim 10,000,000 \text{cd/m}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2              |  |  |  |
| 最小测量直径                                     | ø5mm( <sup>使用近摄</sup> : ø1mm)   ø1mm( <sup>使用近摄</sup> : ø0.2mm)   ø0.5mm( <sup>使用近摄</sup> : ø0.1mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )              |  |  |  |
| 最短测量距离                                     | 350mm (使用近摄镜头时: 55mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |  |  |
| 最小亮度显示                                     | 0.00002cd/m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |  |  |  |
| 最小光谱辐射<br>亮度显示                             | 1.0×10 <sup>−9</sup> W/(sr·m <sup>2</sup> ·nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |  |  |  |
| 亮度: 精度*1<br>(A 光源)                         | $\pm 5\%$ (0.0001 ~ 0.0004cd/m <sup>2</sup> )<br>$\pm 2\%$ (0.0004 ~ 10,000,000cd/m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |  |  |  |
| 亮度: 重复性<br>(2σ) <sup>*2</sup><br>(A 光源)    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |  |  |
| 色度 : 精度 <sup>*1</sup><br>(A 光源)            | x:       ±0.002, y:       ±0.002 (0.001 ~ 0.05cd/m²)       x:       ±0.002, y:       ±0.002, (0.25 ~ 1.25cd/m²)       x:       ±0.002, (0.1 ~ 5cd/m²)         x:       ±0.0015,y:       ±0.001 (0.05 ~ 100,000cd/m²)       x:       ±0.0015,y:       ±0.001 (1.25 ~ 2,500,000cd/m²)       x:       ±0.0015,y:       ±0.001,y:       ±0.001 (5 ~ 100,000cd/m²)       x:       ±0.001,y:       ±0.001,y: </td <td><sup>2</sup>)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <sup>2</sup> ) |  |  |  |
| 色度:<br>重复性<br>(2σ) <sup>*2</sup><br>(A 光源) | x: 0.0030, y: 0.0035 (0.001 ~ 0.003cd/m <sup>2</sup> )<br>x: 0.0010, y: 0.0015 (0.003 ~ 0.1cd/m <sup>2</sup> )<br>x: 0.0006, y: 0.0006 (0.1 ~ 0.2cd/m <sup>2</sup> )<br>x: 0.0006, y: 0.0006 (0.1 ~ 0.2cd/m <sup>2</sup> )<br>x: 0.0004, y: 0.0006 (2.5 ~ 5cd/m <sup>2</sup> )<br>x: 0.0004, y: 0.0004 (0.2 ~ 100,000cd/m <sup>2</sup> )<br>x: 0.0004, y: 0.0014 (0.001 ~ 0.003cd/m <sup>2</sup> )<br>x: 0.0004, y: 0.0014 (0.001 ~ 0.003cd/m <sup>2</sup> )<br>x: 0.0004, y: 0.0014 (0.001 ~ 0.003cd/m <sup>2</sup> )<br>x: 0.0004, y: 0.0014 (0.002 ~ 0.003cd/m <sup>2</sup> )<br>x: 0.0005, y: 0.0006 (0.03 ~ 0.1cd/m <sup>2</sup> )<br>x: 0.0009, y: 0.0006 (0.03 ~ 0.1cd/m <sup>2</sup> )<br>x: 0.0009, y: 0.0006 (0.003 ~ 0.1cd/m <sup>2</sup> )<br>x: 0.0009, y: 0.0000 (0.003 ~ 0.1cd/m <sup>2</sup> )<br>x: 0.0009, y: 0.0000 (0.003 ~ 0.1cd/m <sup>2</sup> )<br>x: 0.0009, y: 0.0000 (0.000 (0.003 ~ 0.1cd/m <sup>2</sup> )<br>x: 0.0009, y: 0.0000 (0.007 ~ 2.5cd/m <sup>2</sup> )<br>x: 0.0005, y: 0.0000 (0.1 ~ 0.2cd/m <sup>2</sup> )<br>x: 0.0000 (0.000 (0.000 cd/m <sup>2</sup> )<br>x: 0.0000 (0.000 cd/m <sup>2</sup> )<br>x: 0.0 | <sup>2</sup> ) |  |  |  |
| 偏振误差                                       | 2% 以下 (400 ~ 780nm) : 1° 3% 以下 (400 ~ 780nm) : 0.2° 0.1°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |  |  |  |
| 积分时间                                       | 0 005 ~ 92 秒 (NORMAI 模式) 0 005 ~ 16 秒 (FAST 模式)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _              |  |  |  |
| 测量 单机                                      | 最短 1 秒以内 (MANUAL 模式) ~约 190 秒 (NORMAL 模式) ~<br>最长约 242 秒 (MANUAL 模式)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |  |  |  |
| 通信*3                                       | 约 0.07 秒 (MANUAL33.333ms, INTELLIGENT DARK 设定时)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |  |  |  |
| 色空间模式                                      | L <sub>v</sub> xy、L <sub>v</sub> u'v'、L <sub>v</sub> T∆uv、 XYZ、 光谱图、 特征波长和激发纯度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |  |  |  |
| 颜色匹配函数                                     | CIE1931 (2°)、 CIE1964 (10°)、 CIE170-2:2015 (PA2°、 PA10°)、<br>任意颜色匹配函数 (兼容测量软件)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |  |  |  |
| 发光频率检测<br>功能                               | 回检测范围: 亮度 10 ~ 5000cd/m <sup>2</sup> , 发光频率 10 ~ 200Hz<br>检测精度: ±0.015Hz, 检测时间: 约 3 秒                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |  |  |
|                                            | USB2.0、 RS-232C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |  |  |  |
| 操作温度/湿度范围                                  | 5 ~ 30℃、 相对湿度 80% 以下 / 无凝露                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |  |  |  |
| 储存温度 / 湿度范围                                | 0 ~ 35℃、 相对湿度 80% 以下 / 无凝露                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |  |  |  |
| 电源                                         | 专用 AC 适配器 (100 ~ 240V • 50/60Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |  |  |  |
| 功率                                         | 约 20W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |  |  |
| 尺寸                                         | 158 (宽) ×262 (高) ×392 (长) mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |  |  |  |
| 重量                                         | 约 7.0kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |  |  |  |

\*1 : 在 NORMAL 模式、 温度 23±2℃ 相对湿度 65% 以下的条件下, 测量 10 次的平均值 \*2 : 在 NORMAL 模式、 温度 23±2℃ 相对湿度 65% 以下的条件下, 测量 10 次

\*3: 不包括测量时的快门开关时间和液晶屏幕的结果显示时间。 电脑等为本公司指定环境。

| 測量波长地图<br>  通信: 10.0m/ jbiel<br>量示波长词隔 ±0.3nm (快速波长 Hg-Cd 光源: 435.8nm, 546.1nm, 643.8nm)<br>光谐波长度度<br>1*0 0.2* 0.1*<br>(中却形成式) 1*0 0.2* 0.1*<br>  0.05 ~ 500,000cd/m <sup>2</sup><br>0.05 ~ 500,000cd/m <sup>2</sup><br>1.5% (0.05 ~ 0.1cd/m <sup>2</sup> )<br>0.05% (0.05 ~ 0.05cd/m <sup>2</sup> )<br>0.05% (0.05 ~ 0.05cd/m <sup>2</sup> )<br>0.25% (0.00 ~ 0.05cd/m <sup>2</sup> )<br>0.25% (0.00 ~ 0.05cd/m <sup>2</sup> )<br>0.25% (0.00 ~ 0.05cd/m <sup>2</sup> )<br>0.25% (0.05 ~ 0.1cd/m <sup>2</sup> )<br>0.25% (0.00 ~ 0.05cd/m <sup>2</sup> )<br>0.25% (0.00 (001-0.05d/m <sup>2</sup> )<br>1.5% (1.25 ~ 1.25d/m <sup>2</sup> )<br>1.5% (1.05 ~ 500,000d/m <sup>2</sup> )<br>0.25% (0.00 (001-0.05d/m <sup>2</sup> )<br>1.5% (1.05 ~ 0.000d/m <sup>2</sup> )<br>0.25% (0.00 (001-0.05d/m <sup>2</sup> )<br>1.5% (1.05 ~ 0.000d/m <sup>2</sup> )<br>1.5% (1.000d/m <sup>2</sup> )<br>1.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 型号                                         | 分光辐射亮度计 CS-3000                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 波长分別ました         0.9nm/pixel           見て波长词開         0.9nm/pixel           現まにの用         1.0nm           波长滴酸         ±0.3nm (松准波长 Hg-Cd 光線: 435.8nm, 546.1nm, 643.8nm)           次活酸と気度度         5nm 以下 (半波気)           (中心切決式)         1*         0.2*           (中心切決式)         1*         0.2*           (日心切決式)         1*         0.2*         0.1*           (日心切決式)         1*         0.2*         0.1*           (日心切決式)         0.0005 ~ 5,000.00/m²         0.0125 ~ 125,0000.01/m²         0.05 ~ 500,000.01/m²           慶以調量超         65mm ( <sup>4</sup> mtriats)         60.5mm ( <sup>4</sup> mtriats)         60.5mm ( <sup>4</sup> mtriats)           慶以湯酸量         55mm ( <sup>4</sup> mtriats)         60.0002 < 0.025 < 0.075 < 125.00000/m²         0.05 ~ 0.00000/m²           人が洗線         1.5% (0.001 ~ 0.0032 < 0.075 < 1.25 < 0.00000/m²)         1.5% (0.005 ~ 0.01000/m²)         1.5% (0.025 ~ 0.015 < 0.00000/m²)           (A 光線)         1.5% (0.001 ~ 0.0032 < 0.007 < 0.0025 < 0.0075 < 0.000000/m²)         0.7% (0.001 ~ 0.0032 < 0.007 < 0.0025 < 0.0075 < 0.000000/m²)         1.5% (0.002 ~ 0.00000/m²)         0.25% (0.03 ~ 0.000000/m²)         × 0.00002 / 0.0000 (0.01 < 0.0032 < 0.0000000/m²)         × 0.0002 / 0.0000 (0.01 < 0.0032 < 0.000000/m²)         × 0.0002 / 0.0000 (0.01 < 0.0032 < 0.00000/m²)         × 0.0002 / 0.0000 (0.01 < 0.0030 < 0.00000(0.01 < 0.0030 < 0.00000(0.01 < 0.0030 < 0.00000 (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 380 ~ 780nm                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |  |  |
| 最示波长筒隔         1.0nm           遠子波长筒腐         ±0.3nm         (校准波长日のCH 洋波路)           光谱波长宽度         5nm 以下(洋波路)           第四年角度<br>(电力切换式)         1°         0.2°         0.1°           「確保和正要認知         0.0005 ~ 5,000 cd/m²         0.0125 ~ 125,000 cd/m²         0.05 ~ 500,000 cd/m²           最小調量直径         55mm ( <sup>他</sup> 田近陽: e0.2mm)         e10mm ( <sup>他</sup> 世近陽; e0.2mm)         e0.5m ( <sup>b</sup> 田近陽; e0.2mm)           最小調量距离         350mm ( <sup>b</sup> 田近陽; e0.2mm)         e0.0000 cd/m²         e0.5mm ( <sup>b</sup> 田近陽; e0.2mm)           最小調量距离         350mm ( <sup>b</sup> 田近陽; e0.2mm)         e0.5mm ( <sup>b</sup> 田近陽; e0.2mm)         e0.5mm ( <sup>b</sup> 田近陽; e0.1mm)           最短小素度度示         -0.0000 cd/m²         1.5% (0.0125 - 0.025 cd/m²)         0.5% (0.0125 - 0.025 cd/m²)           (20)         25% (0.003 - 0.05 cd/m²)         1.5% (0.0125 - 0.025 cd/m²)         0.25% (0.015 - 0.1cd/m²)           (22)         '2         *10001; v0.000 (0001 - 0.003 cd/m²)         1.5% (1.025 - 1.25,000 cd/m²)         0.25% (0.015 - 0.025 cd/m²)         0.25% (0.016 - 0.000 cd/m²)         0.25% (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 波长分辨率                                      | 0 9nm/pixel                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |  |  |
| 波长精度         ±0.3nm<(技術技ど Hg-Cd 光源: 435.8nm, 546.1nm, 643.8nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 显示波长间隔                                     |                                                                                                                                                                                                                                                                                                      | 1.0nm                                                                                                                                                                                                              |                                                                                                                                                                                                                             |  |  |
| 光谱波长宽度         5nm 以下(半波度)           創業角度<br>(A 光源)         1*         0.2*         0.1*           濃度深正度認問<br>(A 光源)         0.0005 ~ 5,000cd/m²         0.0125 ~ 125,000cd/m²         0.05 ~ 500,000cd/m²           濃少原度認可<br>電少原度認可<br>電力         0.5mm (*#PUT#<br>(#3.49)*: e0.1mm)         e1mm (*#PUT#<br>(#3.49)*: e0.2mm)         0.05mm (*#PUT#<br>(#3.49)*: e0.1mm)           濃少原度電示         0.00002cd/m²         0.00002cd/m²         0.00002cd/m²           小光論報表度         1.0×10 *W/(srm²-nm)         55mm)         0.00002cd/m²)           元度<br>薄便性         1.5% (0.0005 - 0.001cd/m²)         1.5% (0.0125 - 0.025cd/m²)         0.7% (0.025 - 0.025cd/m²)           0.7% (0.002 - 0.001cd/m²)         0.5% (0.007 - 0.03cd/m²)         0.7% (0.025 - 0.025cd/m²)         0.7% (0.01 - 0.3cd/m²)           0.7% (0.002 - 0.001cd/m²)         0.5% (0.007 - 0.003cd/m²)         0.7% (0.002 - 0.0075cd/m²)         0.7% (0.01 - 0.3cd/m²)           0.7% (0.002 - 0.001 (001 - 0.05cm²)         x ±0001 y ±000 (001 - 50cm²)         x ±0001 y ±000 (001 - 50cm²)         x ±0001 y ±000 (01 - 50cm²)         x ±0001 y ±000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 波长精度                                       |                                                                                                                                                                                                                                                                                                      | Hg-Cd 光源: 435.8nm、 546                                                                                                                                                                                             | 5.1nm、 643.8nm)                                                                                                                                                                                                             |  |  |
| 調量角度<br>(电力)換式)         1*         0.2*         0.1*           健康正規度認用<br>(本光源)         0.0005 ~ 5,000cd/m <sup>2</sup> 0.0125 ~ 125,000cd/m <sup>2</sup> 0.05 ~ 500,000cd/m <sup>2</sup> 最/>規型目経         e5mm ( <sup>®</sup> 用口服)         e1mm ( <sup>®</sup> 電通) <sup>®</sup> : e0.2mm)         e0.5mm ( <sup>®</sup> 用口服)         e0.5mm ( <sup>®</sup> 用口R)         e0.5mm ( <sup>®</sup> 用口R)         e0.5mm ( <sup>®</sup> RLRRR)         e0.5mm ( <sup>®</sup> RLRRR)         e0.5mm ( <sup>®</sup> RLRRR)         e0.5mm ( <sup>®</sup> RLRRRR)         e0.5mm ( <sup>®</sup> RLRRRR)         e0.5mm ( <sup>®</sup> RLRRRRR)         e0.5mm ( <sup>®</sup> RLRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 光谱波长宽度                                     |                                                                                                                                                                                                                                                                                                      | 5nm 以下 (半波宽)                                                                                                                                                                                                       |                                                                                                                                                                                                                             |  |  |
| 開度保证表現認知<br>(A 光泳)         0.0005 ~ 5,000cd/m <sup>2</sup> 0.0125 ~ 125,000cd/m <sup>2</sup> 0.05 ~ 500,000cd/m <sup>2</sup> 最小測量162         e5mm (使用出程, e1mm)         e1mm (使用出程, e0.1mm)         e0.5mm (使用出程, e0.1mm)         e0.5mm (使用出程, e0.1mm)           最小測量162         STOP         0.0005 ~ 0.000cd/m <sup>2</sup> 0.00002cd/m <sup>2</sup> stop           最小測量165         TOP 1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 测量角度<br>(电动切换式)                            | 1°                                                                                                                                                                                                                                                                                                   | 0.2°                                                                                                                                                                                                               | 0.1°                                                                                                                                                                                                                        |  |  |
| <table-container>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bely<br/>Bel</table-container>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 精度保证亮度范围<br>(A 光源)                         | $0.0005 \sim 5,000 \text{cd/m}^2$                                                                                                                                                                                                                                                                    | 0.0125 ~ 125,000cd/m <sup>2</sup>                                                                                                                                                                                  | 0.05 ~ 500,000cd/m²                                                                                                                                                                                                         |  |  |
| 最辺示認度量距离         350mm (使用近摄镜头时:55mm)           最小元認量現象         0.00002cd/m <sup>2</sup> 最小元認量現象         1.0×10 <sup>-m</sup> W/(sr.m <sup>2</sup> .nm)           高波         1.0×10 <sup>-m</sup> W/(sr.m <sup>2</sup> .nm <sup>2</sup> . | 最小测量直径                                     | ø5mm( <sup>使用近摄</sup> :ø1mm)                                                                                                                                                                                                                                                                         | ø1mm( <sup>使用近摄</sup> : ø0.2mm)                                                                                                                                                                                    | ø0.5mm( <sup>使用近摄</sup> :ø0.1mm)                                                                                                                                                                                            |  |  |
| 撮小洗屋銀示         0.00002cd/m <sup>2</sup> 撮小洗屋銀示         1.0×10°W/(sr.m <sup>2</sup> .nm)           売度:         請慮':         1.0×10°W/(sr.m <sup>2</sup> .nm)           売度:         請慮':         1.0×10°W/(sr.m <sup>2</sup> .nm)           変し:         2%            1.0×10°W/(sr.m <sup>2</sup> .nm)           ご数:         1.0×10°W/(sr.m <sup>2</sup> .nm)           ご数:         1.0×10000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 最短测量距离                                     | 350                                                                                                                                                                                                                                                                                                  | 0mm (使用近摄镜头时: 55m                                                                                                                                                                                                  | m)                                                                                                                                                                                                                          |  |  |
| 温外洗醤福射売度<br>(A 光源)         1.0×10 <sup>-9</sup> W/(sr.m <sup>2</sup> .nm)           売度: 補度''<br>(A 光源)         1.5% (0.0005 ~ 0.001cd/m <sup>2</sup> )<br>0.7% (0.001 ~ 0.003cd/m <sup>2</sup> )         1.5% (0.0125 ~ 0.025cd/m <sup>2</sup> )<br>0.7% (0.01 ~ 0.03cd/m <sup>2</sup> )         1.5% (0.0125 ~ 0.075cd/m <sup>2</sup> )         0.7% (0.1 ~ 0.3cd/m <sup>2</sup> )           (A 光源)         0.7% (0.003 ~ 0.05cd/m <sup>2</sup> )         0.25% (0.07 ~ 1.25cd/m <sup>3</sup> )         0.25% (0.07 ~ 5.0cd/m <sup>2</sup> )         0.15% (5 ~ 500,000cd/m <sup>2</sup> )           (A 光源)         0.15% (0.05 ~ 5.000cd/m <sup>2</sup> )         0.15% (1.25 ~ 125,000cd/m <sup>2</sup> )         0.15% (5 ~ 500,000cd/m <sup>2</sup> )           修度:<br>(A 光源)         * 10001, ': 10001 (005-5000cd/m <sup>2</sup> )         v. 10001, ': 10001 (1.25-125,000cd/m <sup>2</sup> )         v: 10002, ': 10001 (0.1 - 650,000cd/m <sup>2</sup> )           * 10014, ': 100015, ': 10001 (005-5000cd/m <sup>2</sup> )         v: 100014, ': 100015 (1.25-125,000cd/m <sup>2</sup> )         v: 10014, ': 100015 (1.05-500,000cd/m <sup>2</sup> )           * 10014, ': 100015 (0005-5000cd/m <sup>2</sup> )         v: 10011 (0.25-125,000cd/m <sup>2</sup> )         v: 10014, ': 100015 (1.05-500,000cd/m <sup>2</sup> )         v: 10014, ': 100014, ': 100015 (0.07-125,000cd/m <sup>2</sup> )         v: 10014, ': 100015 (0.07-125,000cd/m <sup>2</sup> )         v: 10014, ': 100014, ': 100014, ': 100014, ': 100015 (0.07-25,000cd/m <sup>2</sup> )         v: 10014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 100014, ': 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 最小亮度显示                                     |                                                                                                                                                                                                                                                                                                      | 0.00002cd/m <sup>2</sup>                                                                                                                                                                                           |                                                                                                                                                                                                                             |  |  |
| 売度:         指度**         ±2%           予度:         1.5% (0.0005 ~ 0.001cd/m²)         1.5% (0.0125 ~ 0.025cd/m²)         1.5% (0.05 ~ 0.1cd/m²)           (20)*2         0.25% (0.003 ~ 0.05cd/m²)         0.7% (0.01 ~ 0.03cd/m²)         0.7% (0.01 ~ 0.03cd/m²)         0.7% (0.01 ~ 0.025cd/m²)           (A 光源)*         0.15% (0.05 ~ 5.000cd/m²)         0.15% (0.02 ~ 5.25cd/m²)         0.25% (0.03 ~ 5cd/m²)         0.15% (0.5 ~ 5.000cd/m²)           (A 光源)*         * 10002, y: 10002 (0010-05cd/m²)         x: 10002, y: 10002 (0025-125cd/m²)         x: 10005, y: 10001 (0.15-5000cd/m²)           * 10001, y: 10001 (005-5000cd/m²)         x: 10002, y: 10002 (0025-125cd/m²)         x: 10005, y: 10001 (0.15-5000cd/m²)           * 10002, y: 10001 (005-5000cd/m²)         x: 10002, y: 10001 (0025-125cd/m²)         x: 10005, y: 10001 (0.15-5000cd/m²)           * 10001, y: 10001 (005-5000cd/m²)         x: 10002, y: 10001 (0025-125cd/m²)         x: 10005, y: 10001 (0.15-5000cd/m²)           * 10001, y: 10015 (003-01-0003cd/m²)         x: 10002, y: 10001 (0.02-5000cd/m²)         x: 00003, y: 00035 (0.02-0075cd/m²)         x: 00003, y: 00035 (0.02-0075cd/m²)           * 10002, y: 10001 (0.01-0003cd/m²)         x: 00003, y: 00035 (0.02-0075cd/m²)         x: 00003, y: 00002 (0.1-02cd/m²)         x: 00003, y: 00002 (0.2-0075cd/m²)         x: 00003, y: 00002 (0.2-0075cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 最小光谱辐射亮度                                   |                                                                                                                                                                                                                                                                                                      | $1.0 \times 10^{-9}$ W/(sr·m <sup>2</sup> ·nm)                                                                                                                                                                     |                                                                                                                                                                                                                             |  |  |
| 売度         1.5% (0.0005 ~ 0.001cd/m²)         1.5% (0.0125 ~ 0.025cd/m²)         1.5% (0.05 ~ 0.1cd/m²)           運复世         0.7% (0.001 ~ 0.003cd/m²)         0.7% (0.025 ~ 0.075cd/m²)         0.7% (0.1 ~ 0.3cd/m²)           0.25% (0.03 ~ 0.05cd/m²)         0.15% (1.25 ~ 125,000cd/m²)         0.25% (0.075 ~ 1.25cd/m²)         0.25% (0.075 ~ 500,000cd/m²)           0.15% (1.25 ~ 125,000cd/m²)         1.5% (1.25 ~ 125,000cd/m²)         0.15% (5 ~ 500,000cd/m²)         0.15% (1.25 ~ 10000 (125 - 125,000cd/m²)           * 10002, ': 10001 (005 - 5000cd/m²)         x: 10002, ': 10001 (105 - 5000cd/m²)         x: 10001, ': 10002, ': 10001 (125 - 125,000cd/m²)         x: 10001, ': 10002, ': 10001 (125 - 125,000cd/m²)           * 10002, ': 10001 (01 - 05cd/m²)         x: 10001, ': 10001 (125 - 125,000cd/m²)         x: 10001, ': 10002, ': 10001 (125 - 125,000cd/m²)         x: 10001, ': 10002, ': 10001 (125 - 125,000cd/m²)           * 10002, ': 10001 (10 - 05cd/m²)         x: 10001, ': 10001, ': 10001 (125 - 125,000cd/m²)         x: 10001, ': 10001, ': 10000, ': 10000, ': 10000 (125 - 125,000cd/m²)         x: 10001, ': 10001, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, ': 10000, '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 亮度: 精度*1<br>(A光源)                          |                                                                                                                                                                                                                                                                                                      | ±2%                                                                                                                                                                                                                |                                                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 亮度:<br>重复性<br>(2σ) <sup>*2</sup><br>(A 光源) | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                    | $\begin{array}{ll} 1.5\% & (0.05 \sim 0.1 \text{cd}/\text{m}^2) \\ 0.7\% & (0.1 \sim 0.3 \text{cd}/\text{m}^2) \\ 0.25\% & (0.3 \sim 5 \text{cd}/\text{m}^2) \\ 0.15\% & (5 \sim 500,000 \text{cd}/\text{m}^2) \end{array}$ |  |  |
| (A<br>(A<br>(A<br>)         (i ± 0002, v: ±0001 (001 - 0.05cd/m²)<br>v: ±00014, v: ±0006 (1.5 - 0.050cd/m²)         (i ± 0002, v: ±00011 (0.025 - 1.25cd/m²)<br>v: ±00014, v: ±0006 (1.5 - 0.000cd/m²)         (i ± 00014, v: ±0006 (1.5 - 0.000cd/m²)           E         v: 0030, v: 00035 (001 - 0.003cd/m²)         v: 00030, v: 00035 (001 - 0.03cd/m²)         v: 00030, v: 00035 (0.01 - 0.03cd/m²)         v: 00030, v: 00035 (0.1 - 0.3cd/m²)         v: 00030, v: 00035 (0.1 - 0.3cd/m²)         v: 00030, v: 00035 (0.1 - 0.3cd/m²)         v: 00004, v: 00006 (1.0 - 2cd/m²)         v: 00004, v: 00006 (1.0 - 2cd/m²)         v: 00004, v: 00006 (1.0 - 2cd/m²)         v: 00004, v: 00006 (0.0 - 0.02d/m²)         v: 00004, v: 00006 (1.0 - 2cd/m²)         v: 00004, v: 00006 (0.0 - 0.02d/m²)         v: 00004, v: 00002 (2 - 5.00d/m²)         v: 00004, v: 00002 (2 - 5.00d/m²)         v: 00004, v: 00002 (0 - 0.02d/m²)         v: 00005, v: 00002 (0 - 0.02d/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 色度:<br><u> 特</u> 度 *1                      | $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                | x: ±0.002, y: ±0.002 (0.025~1.25cd/m <sup>2</sup> )<br>x: ±0.0015,y: ±0.001 (1.25~125,000cd/m <sup>2</sup> )                                                                                                       | x: ±0.002, y: ±0.002 (0.1~5cd/m <sup>2</sup> )<br>x: ±0.0015,y: ±0.001 (5~500,000cd/m <sup>2</sup> )                                                                                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (A 光源)                                     | $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                | u': ±0.0022, v': ±0.0011 (0.025 ~ 1.25cd/m <sup>2</sup> )<br>u': ±0.0014, v': ±0.0006 (1.25 ~ 125,000cd/m <sup>2</sup> )                                                                                           | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                        |  |  |
| (2c)       *2       w: 0.0024, v: 0.0014 (0.001~0.003cd/m²)       u': 0.0024, v: 0.0014 (0.025~0.075cd/m²)       u': 0.0024, v: 0.0014 (0.1~0.3cd/m²)         (A 光源)       w: 0.0003, v: 0.0002 (0.01~0.0cd/m²)       u': 0.0003, v: 0.0002 (0.1~0.2cd/m²)       u': 0.0003, v: 0.0002 (0.5~2.5cd/m²)       u': 0.0003, v: 0.0002 (0.2~500cd/m²)         (main: with the the the the the the the the the t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 色度:<br>重复性                                 | x: 0.0030, y: 0.0035 (0.001 ~0.003cd/m <sup>2</sup> )<br>x: 0.0010, y: 0.0015 (0.003 ~0.1cd/m <sup>2</sup> )<br>x: 0.0006, y: 0.0006 (0.1 ~0.2cd/m <sup>2</sup> )<br>x: 0.0004, y: 0.0004 (0.2 ~5,000cd/m <sup>2</sup> )                                                                             | x: 0.0030, y: 0.0035 (0.025~0.075cd/m <sup>2</sup> )<br>x: 0.0010, y: 0.0015 (0.075~2.5cd/m <sup>2</sup> )<br>x: 0.0006, y: 0.0006 (2.5~5cd/m <sup>2</sup> )<br>x: 0.0004, y: 0.0004 (5~125,000cd/m <sup>2</sup> ) | x: 0.0030, y: 0.0035 (0.1 ~ 0.3cd/m <sup>2</sup> )<br>x: 0.0010, y: 0.0015 (0.3 ~ 10cd/m <sup>2</sup> )<br>x: 0.0006, y: 0.0006 (10 ~ 20cd/m <sup>2</sup> )<br>x: 0.0004, y: 0.0004 (20 ~ 500,000cd/m <sup>2</sup> )        |  |  |
| 偏振误差       2% 以下 (400 ~ 780nm) : 1°、 3% 以下 (400 ~ 780nm) : 0.2°、 0.1°         积分时       0.005 ~ 92 秒 (NORMAL 模式) 、 0.005 ~ 16 秒 (FAST 模式)         測量       単机       最短 1 秒以内 (MANUAL 模式) ~ 约 190 秒 (NORMAL 模式) ~         通信 *3       约 0.07 秒 (MANUAL 模式) 、 0.017 秒 (MANUAL 模式)       ~         色空       レ、xy、 L, u' v'、 L, T Δuv、 XYZ、 光谱曲线、 特征波长和激发纯度         6空       レスy、 L, u' v'、 L, T Δuv、 XYZ、 光谱曲线、 特征波长和激发纯度         放色匹配函数 (兼容测量软件)       ClE1931 (2°)、 ClE1964 (10°)、 ClE170-2:2015 (PA2°、 PA10°)、 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2σ) <sup>*2</sup><br>(A 光源)               | $ \begin{array}{l} u'\colon \ 0.0024, v'\colon \ 0.0014 \ (0.001 \sim 0.003cd/m^2) \\ u'\colon \ 0.0009, v'\colon \ 0.0006 \ (0.003 \sim 0.1cd/m^2) \\ u'\colon \ 0.0005, v'\colon \ 0.0002 \ (0.1 \sim 0.2cd/m^2) \\ u'\colon \ 0.0003, v'\colon \ 0.0002 \ (0.2 \sim 5,000cd/m^2) \\ \end{array} $ | u': 0.0024, y': 0.0014 (0.025 ~ 0.075cd/m²)<br>u': 0.0009, y': 0.0006 (0.075 ~ 2.5cd/m²)<br>u': 0.0005, y': 0.0002 (2.5 ~ 5cd/m²)<br>u': 0.0003, y': 0.0002 (5 ~ 125,000cd/m²)                                     | u': 0.0024, v': 0.0014 (0.1~0.3cd/m <sup>2</sup> )<br>u': 0.0009, v': 0.0006 (0.3~10cd/m <sup>2</sup> )<br>u': 0.0005, v': 0.0002 (10~20cd/m <sup>2</sup> )<br>u': 0.0003, v': 0.0002 (20~500,000cd/m <sup>2</sup> )        |  |  |
| 积分时间         0.005 ~ 92 秒 (NORMAL 模式)、0.005 ~ 16 秒 (FAST 模式)           測量         単机         最短1 秒以内 (MANUAL 模式) ~ 约 190 秒 (NORMAL 模式) ~           通信 '3         约 0.07 秒 (MANUAL 模式)         ~ 约 190 秒 (NORMAL 模式)           適信 '3         约 0.07 秒 (MANUAL 模式)         ~ 约 190 秒 (NORMAL 模式)           色空         レ、x y、 し、u' v'、し、TAuv、XYZ、光谱曲线、特征波长和激发纯度           放色型         レ、x y、し、u' v'、し、TAuv、XYZ、光谱曲线、特征波长和激发纯度           放色型         CE1931 (2°)、CE1964 (10°)、CE170-2:2015 (PA2°、PA10°)、           技光频率检测         可检测范围: 亮度 10 ~ 5000cd/m², 发光频率 10 ~ 200Hz           力能         ワ检测范围: 亮度 10 ~ 5000cd/m², 发光频率 10 ~ 200Hz           技行         USB2.0、RS-232C           操作温度 /湿度范围         5 ~ 30°C、相对湿度 80% 以下 / 无凝露           电源         5 ~ 30°C、相对湿度 80% 以下 / 无凝露           电源         专用 AC 适配器 (100 ~ 240V へ、50/60Hz)           功率         约 20W           尺寸         158 (宽) ×262 (高) ×392 (长) mm           重量         约 7.0kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 偏振误差                                       | 2%以下 (400 ~ 780nm) :                                                                                                                                                                                                                                                                                 | 1°、 3%以下 (400 ~ 780nm                                                                                                                                                                                              | n) : 0.2°, 0.1°                                                                                                                                                                                                             |  |  |
| 副量         単机         最短 1 秒以内 (MANUAL 模式) ~ 约 190 秒 (NORMAL 模式) ~           通信 *3         约 0.07 秒 (MANUAL 模式)         ※           適信 *3         约 0.07 秒 (MANUAL 裂 3.333ms, INTELLIGENT DARK 设定时)           色空         レ×x y、 L <sub>v</sub> u' v'、 L <sub>v</sub> T Δuv、 XYZ、光谱曲线、特征波长和激发纯度           颜色         レ配函数         ClE1931 (2°)、 ClE1964 (10°)、 ClE170-2:2015 (PA2°、 PA10°)、           (任意颜色匹配函数 (兼容测量软件)         ClE1931 (2°)、 ClE1964 (10°)、 ClE170-2:2015 (PA2°、 PA10°)、           发光频率检测         可检测范围 : 亮度 10 ~ 5000cd/m², 发光频率 10 ~ 200Hz           功能         ワ           支光         取           支援         10 ~ 5000cd/m², 发光           支援         10 ~ 5000cd/m², 支光           支援         10 ~ 35°C、相対湿度 80% 以下 / 无疑露            0 ~ 35°C、相对湿度 80% 以下 / 无疑露           电源         0 ~ 35°C、相对湿度 80% 以下 / 无疑露           电源         5 20W           尺寸         158 (宽) ×262 (高) ×392 (长) mm <th>积分时间</th> <th>0.005 ~ 92 秒 (NORMAL 模式</th> <th>式) 、 0.005 ~ 16 秒 (FAST 植</th> <th>莫式)</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 积分时间                                       | 0.005 ~ 92 秒 (NORMAL 模式                                                                                                                                                                                                                                                                              | 式) 、 0.005 ~ 16 秒 (FAST 植                                                                                                                                                                                          | 莫式)                                                                                                                                                                                                                         |  |  |
| ・助「「」」通信・3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 测量 单机                                      | - 最短 1 秒以内 (MANUAL 模式) ~ 约 190 秒 (NORMAL 模式) ~<br>最长约 242 秒 (MANUAL 模式)                                                                                                                                                                                                                              |                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |  |  |
| 色空间模式         L <sub>v</sub> xy、L <sub>v</sub> u'v'、L <sub>v</sub> T∆uv、XYZ、光谱曲线、特征波长和激发纯度           颜色匹配函数         ClE1931 (2°)、ClE1964 (10°)、ClE170-2:2015 (PA2°、PA10°)、           资色匹配函数         (兼容测量软件)           发光频率检测         可检测范围: 亮度10~5000cd/m², 发光频率10~200Hz           功能         司检测范围: 亮度10~5000cd/m², 发光频率10~200Hz           投口         USB2.0、RS-232C           操作温度/温度范围         5~30°C、相对温度 80% 以下/无凝露           6存温度/湿度范围         0~35°C、相对温度 80% 以下/无凝露           电源         6用 AC 适配器 (100~240V へ 50/60Hz)           功率         约 20W           尺寸         158 (宽) ×262 (高) ×392 (长) mm           重量         约 7.0kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 通信*3                                       | 约 0.07 秒 (MANUAL33.333ms, INTELLIGENT DARK 设定时)                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |  |  |
| 颜色匹配函数         ClE1931 (2°)、ClE1964 (10°)、ClE170-2:2015 (PA2°、PA10°)、           「注意颜色匹配函数 (兼容测量软件)         「注意颜色匹配函数 (兼容测量软件)           发光频率检测         可检测范围: 亮度 10 ~ 5000cd/m², 发光频率 10 ~ 200Hz           边满度: ±0.015Hz, 检测时间: 约3秒         位测精度: ±0.015Hz, 检测时间: 约3秒           接口         USB2.0、RS-232C           操作温度/温度范围         5 ~ 30°C、相对温度 80% 以下 / 无凝露           储存温度/温度范围         0 ~ 35°C、相对温度 80% 以下 / 无凝露           电源         6 用 AC 适配器 (100 ~ 240V ∿ 、50/60Hz)           功率         约 20W           尺寸         158 (宽) ×262 (高) ×392 (长) mm           重量         约 7.0kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 色空间模式                                      | L <sub>v</sub> xy、L <sub>v</sub> u'v'、L <sub>v</sub> T∆uv、 XYZ、 光谱曲线、 特征波长和激发纯度                                                                                                                                                                                                                      |                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |  |  |
| 发光频率检测       可检测范围: 亮度 10 ~ 5000cd/m², 发光频率 10 ~ 200Hz         放削精度: ±0.015Hz, 检测时间: 约3秒         接口       USB2.0、RS-232C         操作温度/温度范围       5 ~ 30°C、相对湿度 80% 以下 / 无凝露         储存温度/温度范围       0 ~ 35°C、相对湿度 80% 以下 / 无凝露         电源       6用 AC 适配器 (100 ~ 240V へ 50/60Hz)         功率       约 20W         尺寸       158 (宽) ×262 (高) ×392 (长) mm         重量       约 7.0kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 颜色匹配函数                                     | CIE1931 (2°)、 CIE1964 (10°)、 CIE170-2:2015 (PA2°、 PA10°)、<br>任意颜色匹配函数 (兼容测量软件)                                                                                                                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |  |  |
| 接口       USB2.0、RS-232C         操作温度/温度范围       5 ~ 30°C、相对湿度 80% 以下 / 无凝露         储存温度/湿度范围       0 ~ 35°C、相对湿度 80% 以下 / 无凝露         电源       专用 AC 适配器 (100 ~ 240V へ、50/60Hz)         功率       约 20W         尺寸       158 (宽) ×262 (高) ×392 (长) mm         重量       约 7.0kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 发光频率检测<br>功能                               | 可检测范围 : 亮度 10 ~ 5000cd/m <sup>2</sup> , 发光频率 10 ~ 200Hz<br>检测精度 : ±0.015Hz, 检测时间 : 约 3 秒                                                                                                                                                                                                             |                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |  |  |
| 操作温度/温度范围       5 ~ 30℃、相对湿度 80% 以下 / 无凝露         储存温度/温度范围       0 ~ 35℃、相对湿度 80% 以下 / 无凝露         电源       专用 AC 适配器 (100 ~ 240V へ、50/60Hz)         功率       约 20W         尺寸       158 (宽) ×262 (高) ×392 (长) mm         重量       约 7.0kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 接口                                         | USB2.0、 RS-232C                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |  |  |
| 储存温度/湿度范围       0 ~ 35℃、相对湿度 80% 以下 / 无凝露         电源       专用 AC 适配器 (100 ~ 240V へ、50/60Hz)         功率       约 20W         尺寸       158 (宽) ×262 (高) ×392 (长) mm         重量       约 7.0kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 操作温度 / 湿度范围                                | 5~30℃、相对湿度80%以下/无凝露                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |  |  |
| 电源       专用AC适配器 (100 ~ 240V ◆、50/60Hz)         功率       约 20W         尺寸       158 (宽) ×262 (高) ×392 (长) mm         重量       约 7.0kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 储存温度 / 湿度范围                                | 0~35℃、相对湿度80%以下/无凝露                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |  |  |
| 功率     约 20W       尺寸     158 (宽) ×262 (高) ×392 (长) mm       重量     约 7.0kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 电源                                         | 专用 AC 适配器 (100 ~ 240V ~、 50/60Hz)                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |  |  |
| 尺寸       158 (宽) ×262 (高) ×392 (长) mm         重量       约7.0kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 功率                                         | 约 20W                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |  |  |
| 重量 约 7.0kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 尺寸                                         | 158 (宽) ×262 (高) ×392 (长) mm                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 重量                                         | 约 7.0kg                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |  |  |

\*1: 在 NORMAL 模式、 温度 23±2℃ 相对湿度 65% 以下的条件下, 测量 10 次的平均值 \*2: 在 NORMAL 模式、 温度 23±2℃ 相对湿度 65% 以下的条件下, 测量 10 次 \*3: 不包括测量时的快门开关时间和液晶屏幕的结果显示时间。 电脑等为本公司指定环境。

|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 分光辐射亮度计 CS-2000 Plus                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                             | 380 ~ 780nm                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 波长分辨率                                                       | 0.9nm/pixel                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 显示波长间隔                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0nm                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 波长精度                                                        | ±0.3nm (校准波长                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 、<br>Hg-Cd 光源: 435.8nm、 546                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.1nm、 643.8nm)                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 光谱波长宽度                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5nm 以下 (半波宽)                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 测量角度<br>(电动切换式)                                             | 1°                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2°                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1°                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 精度保证亮度范围<br>(A 光源)                                          | $0.003 \sim 5,000 \text{cd/m}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.075 ~ 125,000cd/m²                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.3 \sim 500,000 \text{cd/m}^2$                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 最小测量直径                                                      | ø5mm( <sup>使用近摄</sup> :ø1mm)                                                                                                                                                                                                                                                                                                                                                                                                                                     | ø1mm ( <sup>使用近摄</sup> :ø0.2mm)                                                                                                                                                                                                                                                                                                                                                                                                             | ø0.5mm( <sup>使用近摄</sup> :ø0.1mm)                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 最短测量距离                                                      | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )mm (使用近摄镜头时: 55mi                                                                                                                                                                                                                                                                                                                                                                                                                          | m)                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 最小亮度显示                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00002cd/m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 最小光谱辐射<br>亮度显示                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0×10 <sup>-9</sup> W/(sr·m²·nm)                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 亮度: 精度*1<br>(A 光源)                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ±2%                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| <ul> <li>亮度:重复性</li> <li>(2σ) *2</li> <li>(A 光源)</li> </ul> | $\begin{array}{ll} 0.4\% & (0.003 \sim 0.05 cd/m^2) \\ 0.3\% & (0.05 \sim 0.1 cd/m^2) \\ 0.15\% & (0.1 \sim 5,000 cd/m^2) \end{array}$                                                                                                                                                                                                                                                                                                                           | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                        | 0.4% (0.3 ~ 5cd/m <sup>2</sup> )<br>0.3% (5 ~ 10cd/m <sup>2</sup> )<br>0.15% (10 ~ 500,000cd/m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 色度: 精度*1<br>(A 光源)                                          | x: ±0.003, y: ±0.003 (0.003~0.005cd/m <sup>2</sup> )<br>x: ±0.002, y: ±0.002 (0.005~0.05cd/m <sup>2</sup> )<br>x: ±0.0015, y: ±0.001 (0.05~5,000cd/m <sup>2</sup> )<br>u': ±0.0033, v': ±0.0016 (0.003~0.005cd/m <sup>2</sup> )<br>u': ±0.0022, v': ±0.0011 (0.005~0.05cd/m <sup>2</sup> )<br>u': ±0.0014 u': ±0.0006 (0.05~5,000cd/m <sup>2</sup> )                                                                                                             | x: ±0.003, y: ±0.003 (0.075~0.125cd/m <sup>2</sup> )<br>x: ±0.002, y: ±0.002 (0.125 ~ 1.25cd/m <sup>2</sup> )<br>x: ±0.0015, y: ±0.001 (1.25~125,000cd/m <sup>2</sup> )<br>u': ±0.0033, v': ±0.0016 (0.075~0.125cd/m <sup>2</sup> )<br>u': ±0.0022, v': ±0.0011 (0.125~1.25cd/m <sup>2</sup> )<br>u': ±0.0014, v': ±0.0016 (1.25~12500cd/m <sup>2</sup> )                                                                                   | x: ±0.003, y: ±0.003 (0.3~0.5cd/m <sup>2</sup> )<br>x: ±0.002, y: ±0.002 (0.5~5cd/m <sup>2</sup> )<br>x: ±0.0015, y: ±0.001 (5~500,000cd/m <sup>2</sup> )<br>u': ±0.0033,v': ±0.0016 (0.3~0.5cd/m <sup>2</sup> )<br>u': ±0.0022,v': ±0.0011 (0.5~5cd/m <sup>2</sup> )<br>u': ±0.014, u': ±0.0006 (5~500,000cd/m <sup>2</sup> )                                                                                                            |  |  |  |
| 色度: 重复性<br>(2σ) <sup>*2</sup><br>(A 光源)                     | x: 0.002, y: 0.002 (0.003 ~ 0.005cd/m <sup>2</sup> )<br>x: 0.001, y: 0.001 (0.005 ~ 0.1cd/m <sup>2</sup> )<br>x: 0.006, y: 0.0006 (0.1 ~ 0.2cd/m <sup>2</sup> )<br>x: 0.0004, y: 0.0008 (0.02 ~ 5,000cd/m <sup>2</sup> )<br>u': 0.0016, v': 0.0008 (0.003 ~ 0.005cd/m <sup>2</sup> )<br>u': 0.0008, v': 0.0004 (0.005 ~ 0.1cd/m <sup>2</sup> )<br>u': 0.0005, v': 0.0002 (0.1 ~ 0.2cd/m <sup>2</sup> )<br>u': 0.0005, v': 0.0002 (0.2 ~ 5,000cd/m <sup>2</sup> ) | x: 0.002, y: 0.002 (0.075~0.125cd/m <sup>2</sup> )<br>x: 0.001, y: 0.001 (0.125~2.5cd/m <sup>2</sup> )<br>x: 0.006, y: 0.0006 (2.5~5cd/m <sup>2</sup> )<br>x: 0.0004, y: 0.0004 (5~125,000cd/m <sup>2</sup> )<br>u': 0.0016, v': 0.0008 (0.075~0.125cd/m <sup>2</sup> )<br>u': 0.0008, v': 0.0004 (0.125~2.5cd/m <sup>2</sup> )<br>u': 0.0005, v': 0.0002 (2.5~5cd/m <sup>2</sup> )<br>u': 0.0005, v': 0.0002 (5~125,000cd/m <sup>2</sup> ) | x: 0.002, y: 0.002 (0.3 ~ 0.5cd/m <sup>2</sup> )<br>x: 0.001, y: 0.001 (0.5 ~ 10cd/m <sup>2</sup> )<br>x: 0.006,y: 0.0006 (10 ~ 20cd/m <sup>2</sup> )<br>x: 0.0004,y: 0.0004 (20 ~ 500,000cd/m <sup>2</sup> )<br>u': 0.0016,v': 0.0008 (0.3 ~ 0.5cd/m <sup>2</sup> )<br>u': 0.0008,v': 0.0004 (0.5 ~ 10cd/m <sup>2</sup> )<br>u': 0.0005,v': 0.0002 (10 ~ 20cd/m <sup>2</sup> )<br>u': 0.0005,v': 0.0002 (20 ~ 500.000cd/m <sup>2</sup> ) |  |  |  |
| 偏振误差                                                        | 2%以下 (400 ~ 780nm) :                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1°、 3% 以下 (400 ~ 780nm                                                                                                                                                                                                                                                                                                                                                                                                                      | n) : 0.2°、 0.1°                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 积分时间                                                        | 0.005 ~ 120 秒 (NORMAL 樽                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.005 ~ 120 秒 (NORMAL 模式)、 0.005 ~ 16 秒 (FAST 模式)                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 测量 单机                                                       | 最短 1 秒以内 (MANUAL 模式) ~ 最长约 242 秒 (NORMAL 模式、 MANUAL 模式)                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 时间 通信*3                                                     | 约 0.08 秒 (MANUAL33.333m                                                                                                                                                                                                                                                                                                                                                                                                                                          | s, INTELLIGENT DARK 设定时)                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 色空间模式                                                       | L <sub>v</sub> xy、L <sub>v</sub> u'v'、L <sub>v</sub> T∆uv、 XYZ、 光谱曲线、 特征波长和激发纯度                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 颜色匹配函数                                                      | CIE1931 (2°) 、 CIE1964 (10°) 、 CIE170-2:2015 (PA2°、 PA10°) 、<br>任意颜色匹配函数 (兼容测量软件)                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 发光频率检测<br>功能                                                | 无                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 接口                                                          | USB2.0、 RS-232C                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 操作温度 / 湿度范围                                                 | 5~35℃、 相对湿度 80% 以⁻                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5~35℃、相对湿度80%以下/无凝露                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 储存温度 / 湿度范围                                                 | 0~35℃、相对湿度80%以下/无凝露                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 电源                                                          | 专用 AC 适配器 (100 ~ 240\                                                                                                                                                                                                                                                                                                                                                                                                                                            | 专用 AC 适配器 (100 ~ 240V <b>~</b> 、 50/60Hz)                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 功率                                                          | 约 20W                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 尺寸                                                          | 158 (宽) ×262 (高) ×392 (长) mm                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 重量                                                          | 约 7.0kg                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |

\*1:在 NORMAL 模式、 温度 23±2℃ 相对湿度 65% 以下的条件下, 测量 10 次的平均值
\*2:在 NORMAL 模式、 温度 23±2℃ 相对湿度 65% 以下的条件下, 测量 10 次
\*3:不包括测量时的快门开关时间和液晶屏幕的结果显示时间。 电脑等为本公司指定环境。

〈注意事项〉

・本公司对本仪器的误使用、误操作、擅自改装等引起的损害、以及因本仪器的使用或者无法使用引起的间接的、附带的损失(包括但不限于商业利益损失、业务中断等)不承担责任,敬请谅解。

