Data Management Software

CA-S20w

Ver.2.4

Instruction Manual
Safety Precautions
Before you use the CA-S20w software, we recommend that you thoroughly read this manual as well as the instruction manuals of your PC and the instrument.

Formal designations of application software used in this manual

(Designation in this manual) (Formal designation)

Windows, Windows XP Microsoft® Windows® XP Professional Operating System
Windows, Windows Vista Microsoft® Windows® Vista Business Operating System
Windows, Windows 7 Microsoft® Windows® 7 Professional Operating System
Excel Microsoft® Excel®
Visual Basic .NET 2005 Microsoft® Visual Basic .NET 2005
Visual Basic 2010 Microsoft® Visual Basic 2010

Trademarks

• “Intel” and “Pentium” are registered trademarks of Intel Corporation in the U.S.A. and other countries.

Other company names and product names mentioned in this manual are the registered trademarks or trademarks of their respective companies.

Notes on this manual

• No part of this manual may be reprinted or reproduced in any form or by any means without the permission of Konica Minolta, Inc.

• The contents of this manual are subject to change without notice.

• Every effort has been made to ensure the accuracy of the contents of this manual. However, should you have any questions or comments, or find an error or missing section, please contact your local sales office.

• Konica Minolta accepts no responsibility for consequences resulting from failure to follow the instructions outlined in this manual, the condition above notwithstanding.
Introduction

Software License Agreement

The terms of the license agreement of the CA-S20w software are provided in the Software License Agreement dialog box displayed on-screen during the installation process. This software can be installed only if you agree to all the terms of the agreement.

Notes on Use

• The CA-S20w application software is designed to be used with the Windows XP, Windows Vista or Windows 7 operating system. Note that neither operating system is included with this software.
• The Windows XP operating system must be installed on the PC before this software can be installed.

Notes on Instruction Manual

The Instruction Manual is also installed in PDF form with a shortcut in the start menu during the software installation.
To read the manual, go to Start Menu → All programs → KONICAMINOLTA → Data Management Software CA-S20w → Manual PDF file.
You will need Adobe Reader® from Adobe Corporation. The latest Adobe Reader® can be downloaded for free from the Adobe website.

Every effort has been made to ensure the accurate operation of this software. However, should you have any questions or comments, please contact the nearest KONICA MINOLTA authorized service facility.
CONTENTS

Chapter 1 Overview ... 3
 1.1 Major Functions ... 4
 1.2 Operation Flow ... 5
 1.3 Window Configuration ... 6

Chapter 2 Operation Guide ... 11
 2.1 Basic Operations ... 13
 2.2 Measurement (Operations) ... 21
 2.3 Observation ... 56
 2.4 Creating Reports (Printing and Sending Data) 76
 2.5 File Management .. 84
 2.6 Customization ... 90
 2.7 Display Object Properties ... 96
 2.8 Other Functions ... 122
 2.9 Error Messages ... 125

Chapter 3 Automation ... 127
 3.1 Supported Software .. 128
 3.2 Basic Operation Flow ... 129
 3.3 Configuring the Development Environment 130
 3.4 Procedure for Establishing and Terminating Connection with the CA-S20w .. 131
 3.5 Command Configuration .. 132
 3.6 Program Control Flow .. 134
 3.7 Main Object Commands ... 135
 3.8 Measurement Conditions Object Commands 152
 3.9 User Calibration Coefficient Object Commands 161
 3.10 Spot Setting Conditions Object Commands 163
 3.11 Spot Object Commands .. 167

Chapter 4 Appendix ... 171
 4.1 Self Diagnosis ... 172
 4.2 Index ... 176
 4.3 Automation Commands List ... 179
CHAPTER 1

OVERVIEW

1.1 Major Functions ... 4
1.2 Operation Flow ... 5
1.3 Window Configuration ... 6
 1.3.1 Main Screen ... 6
 1.3.2 Measurement Screen ... 7
 1.3.3 Spot Measurement Setting Screen 7
 1.3.4 Menu Bar ... 8
 1.3.5 Status Bar .. 9
 1.3.6 Toolbar .. 9
 1.3.7 Graph Toolbar ... 10
1.1 Major Functions

<table>
<thead>
<tr>
<th>Instrument control functions</th>
<th>Measurement, Synchronous Measurement, Acquisition of Measurement Data, Measurement Condition (Exposure) Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement flow</td>
<td>Normal Measurement, Spot Measurement</td>
</tr>
<tr>
<td>Number of measurement points</td>
<td>980 × 980, 490 × 490, 196 × 196</td>
</tr>
<tr>
<td>Color space mode</td>
<td>XYZ, L\text{vxy}, L\text{vu'}v, TΔuv, Dominant Wavelength, Excitation Purity, L\text{v} (Contrast)</td>
</tr>
</tbody>
</table>

Note

When measuring colors with high color purity, the measurement data may be out of the range defined in each color space mode, due to errors resulting from numeric operations or corrective operations.

<table>
<thead>
<tr>
<th>Display</th>
<th>Pseudocolor Graph, Cross Section Diagram, 3D Graph, Chromaticity Diagram, Spot, Mura Control Graph, Histogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data management</td>
<td>Uploading/saving of the document (measurement data) files in the original format (with “mcl” file extension)</td>
</tr>
<tr>
<td></td>
<td>Saving graph settings, Uploading/saving of template files in original format (with “mct” file extension)</td>
</tr>
<tr>
<td></td>
<td>Uploading/saving of other files in the original formats (spot setting files, user calibration coefficient files and measurement condition files)</td>
</tr>
<tr>
<td></td>
<td>The data file of the previous product (CA-1500 (Ver. 2.12 or later)) can be uploaded.</td>
</tr>
<tr>
<td></td>
<td>File management on a folder-by-folder basis</td>
</tr>
</tbody>
</table>
1.2 Operation Flow

Start the CA-S20w software.

Connect CA-2500/CA-2000 to
Select CA-2500/CA-2000

Prepare CA-2500/CA-2000.
Instrument settings

Measurement
User Calibration Spot Measurement Continuous Measurement

Data Management
View the list data

Visually observe the luminance/chromaticity distribution [Pseudocolor Graph]
Observe the luminance/chromaticity at a specified spot [Spot Measurement Graph]
Observe the luminance/chromaticity in three dimensions [3D Graph]
Observe the chromaticity/luminance unevenness [Mura Control Graph]
Observe the distribution cross section of the luminance/chromaticity
Observe variations in the luminance/chromaticity [Histogram]
Observe the chromaticity distribution [Chromaticity Diagram]

Print Save

Disconnect CA-2500/CA-2000.

Exit the CA-S20w software.

The shaded sections indicate functions available only when the CA-2500/CA-2000 is connected.
1.3 Window Configuration

1.3.1 Main Screen

The following screen is displayed when you start CA-S20w.

- **Data List**: Displays the list of data names. The details of the measurement data selected on the list are displayed on the Data view, Data display box, and Condition frame.
- **Toolbar (p. 9)**: Displays icons corresponding to frequently used functions in CA-S20w.
- **Page selection tabs**: Basic screens that are convenient for data analysis are prepared in advance. You can customize the tabs as necessary.
- **Menu bar (p. 8)**: Shows functions categorized among menus.
- **Document window (p. 18)**: Manages/displays measurement data. Two or more document windows can be opened simultaneously. (P. 123)
- **Data display box**: Displays measurement data with an RGB image. Also displays the evaluation area, spot measurement frames, and zoom area.
- **Data view**: Displays measurement results as graphs.
- **Status bar (p. 9)**: Displays the details or status of each function of CA-S20w.
- **Condition frame**: Displays the conditions under which the data was measured.
- **Status bar (p. 9)**: Displays the details or status of each function of CA-S20w.
1.3.2 Measurement Screen

The dialog box displayed when performing measurement. Check the measurement conditions before performing measurement.

In addition to clicking the corresponding button, the pane can be switched using the following keyboard operations:

- Pressing the ESC + F5 keys: button
- Pressing the ESC + F6 keys: button
- Pressing the ESC + F7 keys: button
- Pressing the ESC + F8 keys: button
- Pressing the ESC + F9 keys: button

1.3.3 Spot Measurement Setting Screen

A dialog box used to set spot frames for calculations during spot measurement. To display this screen, click the button on the pane of the Measure dialog box.
1.3.4 Menu Bar

When the CA-S20w software is started, a menu bar appears at the top of the window in a manner similar to other Windows-based software. This section lists the functions available in the menu bar and the manual pages on which these functions are described.

<table>
<thead>
<tr>
<th>Menu Category</th>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>New</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Open</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Close</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Save</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Save As</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Template</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Import</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Print</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Print Preview</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Page Setup</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Recent File</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exit</td>
<td></td>
</tr>
<tr>
<td>Edit</td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cut</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Copy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paste</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Delete</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spot setting</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Property</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Add Page</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Delete Page</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Cut</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Copy</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Paste</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Delete</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Bring to Front</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Send to Back</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Edit Mode</td>
<td>90-95</td>
</tr>
<tr>
<td></td>
<td>Property</td>
<td>96-121</td>
</tr>
<tr>
<td>View</td>
<td>Multi screen</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>xy Graph Link</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Standard Toolbar</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Status Bar</td>
<td>9</td>
</tr>
<tr>
<td>Instrument</td>
<td>Connect</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Disconnect</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Setting/Measure</td>
<td>17, 19, 21</td>
</tr>
<tr>
<td></td>
<td>Self Diagnosis</td>
<td>172</td>
</tr>
<tr>
<td>Tool</td>
<td>File Path</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Install calibration files</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Measure luminance centroid distance</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Create color region user calibration file</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Option</td>
<td>122</td>
</tr>
<tr>
<td>Window</td>
<td>Cascade</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Tile</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Opened File</td>
<td></td>
</tr>
<tr>
<td>Help</td>
<td>Manual</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>About CA-S20w</td>
<td></td>
</tr>
</tbody>
</table>
1.3.5 Status Bar

Displays the name of the target data being set.

A user scale is displayed here when it has been set.

Displays the serial number of the connected CA-2500/CA-2000.

Displays the descriptions of each menu.

Displays the resolution currently set on the CA-S20w.

Displays the status of the connection with the CA-2500/CA-2000.

Displays the Ignore Pixels setting.

1.3.6 Toolbar

When you start CA-S20w, the button icons are displayed with the factory default settings. Select View - Standard Toolbar from the menu to show/hide the toolbar.

1) New (page 89)
2) Open (page 86)
3) Save (page 84)
4) Cut (page 95)
5) Copy (page 95)
6) Paste (page 95)
7) Print (page 76)
8) Setting (pages 17, 21-29)
1.3.7 Graph Toolbar

This bar appears in the window when the CA-S20w software is in edit mode.

For details of the graph toolbar, see “2.6 Customization” (pages 90-95).

1) Selection tool
2) Line object
3) Circle object
4) Rectangle object
5) String Label object
6) Pseudocolor object
7) Pseudocolor with Multi-Spot object
8) 3D object
9) Cross section diagram object
10) xy-chromaticity diagram object
11) Mura control object
12) RGB object
13) Histogram object
CHAPTER 2
OPERATION GUIDE

2.1 Basic Operations ... 13
 2.1.1 Before Starting Software ... 13
 2.1.2 Starting Software .. 13
 2.1.3 Connection Method .. 14
 2.1.4 Connection Releasing Method 15
 2.1.5 Version Information ... 16
 2.1.6 Measuring Luminance/Chromaticity Distribution 17
 2.1.7 Luminance/Chromaticity Spot Measurement 19

2.2 Measurement (Operations) ... 21
 2.2.1 Measurement .. 21
 2.2.2 Naming Data, Entering Comments 30
 2.2.3 User Calibration ... 32
 2.2.4 Spot Measurement .. 35
 2.2.5 Spot Measurement Settings ... 42
 2.2.6 Creating a Color Region User Calibration File 46
 2.2.7 Performing Continuous Measurement 48
 2.2.8 Performing Illumination Measurement 50
 2.2.9 Calculation Using Measurement Data as Target Data 51
 2.2.10 Specifying pixels to be ignored in the image inside the evaluation area 52
 2.2.11 Viewing Angle Correction Settings 53
 2.2.12 Measurement Data Properties 55

2.3 Observation .. 56
 2.3.1 Displaying Measurement Data 56
 2.3.2 Observing Luminance/Chromaticity Distribution [Pseudocolor Graph] .. 56
 2.3.3 Viewing the Distribution Cross Section of Luminance/Chromaticity [Section] ... 59
 2.3.4 Observing the Luminance/Chromaticity in Three Dimensions [3D Graph] 63
 2.3.5 Observing Chromaticity Distribution [Chromaticity Diagram] 65
 2.3.6 Observing Several Pieces of Measurement Data [Chromaticity Diagram (Multiple Selection)] 67
 2.3.7 Observing Luminance/Chromaticity for Spots [Spot Measurement Graph] 68
 2.3.8 Observing Color Difference for Spots [Color Difference] 70
 2.3.9 Observing Chromaticity/Luminance Unevenness [Mura Control Graph] 72
 2.3.10 Observing the Variation of Luminance/Chromaticity [Histogram] 73
 2.3.11 Displaying Multiple Graphs Simultaneously [Multi Screen] 74
 2.3.12 Linking the Chromaticity Diagram and Pseudocolor Images [xy Graph Link] ... 75

2.4 Creating Reports (Printing and Sending Data) 76
 2.4.1 Printing .. 76
 2.4.2 Pasting Graphs into Other Software 77
 2.4.3 Sending Data .. 78
 2.4.4 Saving Data in a Text Format .. 81
2.5 File Management.. 84
 2.5.1 File Types...84
 2.5.2 Saving and Loading Documents ...84
 2.5.3 Uploading the Measurement Data from the CA-150088
 2.5.4 Creating a New Document ..89
 2.5.5 Template File Loaded when CA-S20w Starts89

2.6 Customization .. 90
 2.6.1 Overview..90
 2.6.2 Edit Mode ..90
 2.6.3 Graph Toolbar ...91
 2.6.4 Add/Delete/Rename Page ...92
 2.6.5 Editing Display Object ...93

2.7 Display Object Properties .. 96
 2.7.1 Line Object...96
 2.7.2 Rectangle Object/Circle Object ..97
 2.7.3 Label Object..98
 2.7.4 Pseudocolor Object ...100
 2.7.5 Pseudocolor with Spot Object ..107
 2.7.6 3D Object ...111
 2.7.7 Cross Section Diagram Object ...112
 2.7.8 xy-Chromaticity Diagram Object ...115
 2.7.9 Mura Control Object ...118
 2.7.10 RGB Object ..120
 2.7.11 Histogram Object ..121

2.8 Other Functions.. 122
 2.8.1 Option ..122
 2.8.2 Cascade/Tile ..123
 2.8.3 Error Recovery Function ...123
 2.8.4 Management of Calibration Files ..123
 2.8.5 Self Diagnosis ...123

2.9 Error Messages... 125
2.1 Basic Operations

2.1.1 Before Starting Software

Before starting the software, check the following:
- Whether the software is properly installed (See the CA-S20w Installation Guide.)
- Whether the CA-2500/CA-2000 is properly connected to the PC (See the CA-S20w Installation Guide and the CA-2500/CA-2000 Instruction Manual.)
- Whether the calibration data for the lens to use is properly installed (See the CA-S20w Installation Guide.)

2.1.2 Starting Software

In Windows, select Start - All Programs - KONICAMINOLTA - CA-S20w - CA-S20w. The software starts. The Connect CA-2500/CA-2000 dialog box appears.
2.1.3 Connection Method

1. Select the serial number of the CA-2500/CA-2000 you want to use and click the OK button.

 Tip
 The Connect CA-2500/CA-2000 dialog box appears if you select Instrument - Connect from the menu.

 Tip
 If you don’t want to use the CA-2500/CA-2000, select ‘Disconnect’. You can connect the CA-2500/CA-2000 at a later time.

 Tip
 If you have not installed calibration data yet, select ‘Disconnect’ and click the OK button. For details about the installation of calibration data, refer to the CA-S20w Installation Guide.

2. The Self Diagnosis dialog box appears. For details about Self Diagnosis, refer to page 172.
2.1.4 Connection Releasing Method

1. Select Instrument - Disconnect from the menu bar.

2. Double-click the Safe To Remove Hardware icon in the lower right corner of the PC screen. The Safely Remove Hardware dialog box appears.

 CA-2500/CA-2000 is disconnected from the PC and the USB cable can be removed.

Note
Be sure to release the connection with the operational procedures above before removing the USB cable.

Tip
- If a communication error occurs while the instrument is connected due to a communication interruption and the instrument restarts, connect the USB cable to a different USB port on the PC. (For example, switch from a port on the front of the PC to a port on the back of the PC.)
- If the error recovery function (page 123) activates, save the open file before establishing the connection. You will not be able to establish a connection until you save the file.
2.1.5 Version Information

Select Help - About CA-S20w from the menu and the About CA-S20w dialog box appears. The version information of the CA-S20w is displayed in the dialog box.

In the About CA-S20w dialog box, you can see the following information and the information on lens calibration.

<table>
<thead>
<tr>
<th>Item</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmware version</td>
<td>Version No.</td>
</tr>
<tr>
<td>Date of calibration</td>
<td>Date of calibration</td>
</tr>
<tr>
<td>CA-2500 serial number or CA-2000 serial number</td>
<td>CA-2500/CA-2000 serial number</td>
</tr>
<tr>
<td>USB driver version</td>
<td>Version No.</td>
</tr>
<tr>
<td>USB Library1 version</td>
<td>Version No.</td>
</tr>
<tr>
<td>USB Library2 version</td>
<td>Version No.</td>
</tr>
</tbody>
</table>
2.1.6 Measuring Luminance/Chromaticity Distribution

This section describes the simplest procedure for measuring the luminance/chromaticity distribution of the measured object.

Measuring procedure

1. From the menu, select Instrument - Setting/Measure. ()

 The Measure dialog box appears.

 You can also click the button on the toolbar.

2. Looking at the viewfinder view in the Measure dialog box, adjust the positions of the CA-2500/CA-2000 and the measured object, and adjust the focus.

 If the viewfinder image is not clear, click the ‘Finder’ button in the pane, and then adjust the exposure and other parameters on the displayed screen. (See page 29.)

3. In the ‘Evaluation area frame’ in the viewfinder view, check the position and size of the evaluation area.

 If the ‘Evaluation area frame’ is not in the desired state, click the ‘Spot’ button from the pane and adjust the state in the displayed screen. (Refer to page 35.)

 Use the mouse to select the ‘Exposure setting frame’, and to adjust its position and size.

4. In ‘Measure’, make the following settings.

 1) In ‘Lens’, select the type of lens mounted in the CA-2500/CA-2000 and the focus ring distance.
 2) Select the ‘Normal Measurement’ radio button in ‘Condition’.
 3) Uncheck the ‘Manual’ and ‘Multiple exposure’ check boxes in the ‘Exposure Settings’ frame.
 4) Set ‘Additional’ to ‘Normal’.
 5) Set ‘Image’ to ‘490*490’.
5. Click the ‘Measure’ button.

After a dark measurement is performed, the measurement result is reflected in the document window.

1) Use the ‘Color’ selection combo box in the document window to select the colorimetric data to observe. When the graph in the data view screen is selected, the ‘Color’ selection combo box is enabled.

2) Observe the luminance/chromaticity distribution, selecting pages using the document window’s page selection tabs.
2.1.7 Luminance/Chromaticity Spot Measurement

This section gives an example of the simplest procedure for performing spot measurement of the luminance/chromaticity of a measured object.

Measuring procedure

1. From the menu, select Instrument - Setting/Measure. (✓)

 The Measure dialog box appears.
 You can also click the button on the toolbar.

2. Looking at the viewfinder view, adjust the positions of the CA-2500/CA-2000 and the measured object, and adjust the focus.

 If the image of the viewfinder view is not clear, click the ‘Finder’ button on the pane, and then adjust the exposure and other parameters on the displayed screen. (See page 29.)

3. In the ‘Evaluation area frame’ in the viewfinder view, check the position and size of the evaluation area.

 If the desired spot frame set is not displayed, click the ‘Spot’ button on the pane, and then generate a new spot frame set on the displayed screen or load a configuration file. (See page 35.)

 Use the mouse to select the exposure setting frame, and adjust its position and size.

4. Click the ‘Measure’ button on the pane and configure the following settings on the displayed screen.

 1) In ‘Lens’, select the type of lens mounted in the CA-2500/CA-2000 and the focus ring distance.
 2) Select the ‘Normal Measurement’ radio button in ‘Condition’.
 3) Uncheck the ‘Manual’ and ‘Multiple exposure’ check boxes in the ‘Exposure Settings’ frame.
 4) Set ‘Additional’ to ‘Normal’.
 5) Set ‘Image’ to ‘490*490’.

 Evaluation area frame (yellow) Exposure setting frame (green)
5. Click the ‘Measure’ button.

After a dark measurement is performed, the measurement result is reflected in the document window.
1) Use the page selection tabs in the document window to display the ‘Spot’ page.
2) Observe the spot measurement result.
3) Use the ‘Color’ selection combo box in the document window to select the colorimetric data to observe.
4) To change the display items for the spot measurement value:
 4)-1 Double-click on the selected measurement data on the Data list.
 4)-2 In the displayed Measureing Data-Spot-Data Name dialog box, click the ‘Numeric’ tab.
 4)-3 Click the ‘Color’ button to display the Color dialog box, and select the desired color.

NOTE

These changes are effective only for the selected measurement data.
CHAPTER 2 : OPERATION GUIDE

2.2 Measurement (Operations)

2.2.1 Measurement

To start measurement, you have to complete each setting in the Measure dialog box.

Measuring procedure

1. On the pane of the Measure screen, click the button of each option and complete the setting. (See page 23 to page 29.)

2. Click the ‘Measure’ button.

Measurement starts.

Tip

• If you complete each setting in ‘Measure’ and click the Cancel button, the Measure dialog box closes enabling the measurement settings.

• The measurement settings are valid only for the currently opened document.

• To use a previously created measurement condition, you have to save the file. See “2.5 File Management” (pages 84-89).

• During measurements and editing, the following folders are used as the temporary storage areas for measurement data.

Windows XP:
C:\Documents and Settings\"User Name"\Local Settings\Temp\mc1
Windows Vista and Windows 7:
C:\Users\"User Name"\AppData\Local\Temp\mcl

- Ensure that there is sufficient free space on the drive that contains this folder.
- The user account must have access rights (write permission) to the temporary save folder. If a file save error occurs during measurement, contact your nearest computer administrator.
Measure Dialog Box - Measure Button

1) Lens

Lens Type
Used to select the lens to use for measurement.

Notes:
• If you select an incorrect lens, you cannot obtain accurate measurement results.
• Some of the lenses available may not be displayed if not all the calibration files have been installed, or if they are out of date.

Lens Position
Looking at the viewfinder view, operate the lens focus ring to adjust the focus. After you adjust the focus, check the focus ring distance and select the distance for ‘Lens position’ which is the closest to this distance. Select the distance from the drop-down list.

Tip
For the setting of measurement distance and the reading of focus ring distance, see “2D Chroma Meter CA-2500 Series Instruction Manual” or “2D Chroma Meter CA-2000 Series Instruction Manual”.

2) Condition

Normal Measurement
Select this option to perform measurement in normal mode.

Synchronized Measurement
Select this option to perform measurement with internal synchronization. Use this option to measure objects such as PDP or CRT that repeat emission intermittently. Click the ‘Freq. Setting...’ button and enter the frequency of vertical synchronization in the ‘Freq.’ field in the Frequency dialog box. After a frequency is entered, a selectable table is newly created depending on the frequency you have entered.

Notes:
The brightness of the viewfinder image changes after the ‘Set’ button is clicked, or after Normal Measurement is changed to Synchronized Measurement or vice versa. If the viewability of the image becomes poor, set up the optimal conditions in the ‘Exposure setting’ combo box.

Tip
You can enter a value between 4 and 2000 Hz. Changing the value entered in ‘Freq.’ changes the values displayed for shutter speed, gain, and ND filter in ‘Exposure setting’.

Notes:
In synchronization measurement, the integer value (rounded off) obtained by the following formula is used as the actual shutter speed (sensor exposure time).

\[
100000 \mu \text{sec} \times 2^{\text{value entered in ‘Freq.’} \times 2^n (n = 0, 1, 2, 3, ...)}
\]
For this reason, if a large value is entered in the ‘Freq.’ field, changing the value of decimal places may not change the shutter speed to be used for measurement.
3) Exposure Settings
Used to set the shutter speed, ND filter, and amp gain during measurement.

Manual
When this checkbox is unchecked, the CA-2500/CA-2000 sets the exposure automatically depending on the object to be measured. Use this setting for normal operations.
Check this option to fix the exposure setting.

In order of least to greatest effect of noise on measurement results, the settings are: One Shot (1) ⇒ Ultra Fast (4) ⇒ Fast (16) ⇒ Normal (64) ⇒ High acc. (256).
In order of greatest to least amount of time required, the settings are: One Shot (1) ⇒ Ultra Fast (4) ⇒ Fast (16) ⇒ Normal (64) ⇒ High acc. (256).
Level for Lower limit
Areas under a fixed brightness level are processed as “Under”. For example, when measuring an object that contains both a bright and dark image, such as characters on a car speedometer, the data from areas with a small amount of light vary widely due to exposure shortage. Displaying the data may make the result difficult to see. By setting the ‘Level for Lower limit’, you can process areas that fall short of the amount of light in the imaging range as “Under”. For an image that has been judged as “Under”, the luminance and chromaticity are not calculated and the result is not displayed. However, in some cases, obtaining data takes precedence over performing the “Under” process, even if the data on areas with a small amount of light vary widely. For example, when observing characters on a car speedometer, as mentioned above, you can ascertain the clarity of the characters by observing the state of the bright area and dark area. In this case, you can obtain data on areas with a smaller amount of light by adjusting the ‘Level for Lower limit’ setting. Enter a value between 0 and 100.

- **Note**
 - When the value is 0%, the ‘Level for Lower limit’ function does not work.
 - When the number of additions is 1 and ‘Level for Lower limit’ is 100%, all measurement data are judged as “Under”.
 - 100% does not represent the peak level but represents the saturation level. Consequently, under certain exposure conditions, all data may be judged as “Under” even with the setting of 70%.

- **Tip**
 - If you increase the number of additions with the same setting value in ‘Level for Lower limit’, you can obtain data on areas with a smaller amount of light.
 - Instead of setting a specific threshold value as a measurement condition beforehand, you can specify pixels to be ignored based on the obtained measurement data. For details, refer to “Specifying pixels to be ignored in the image inside the evaluation area” (page 52).

5) Resolution
Used to set the resolution of the instrument.

- **490 * 490**
 Measures the object with 490 × 490 measurement points.

- **980 * 980**
 Measures the object with 980 × 980 measurement points.

- **196 * 196**
 Measures the object with 196 × 196 measurement points.

- **Note**
 One document file is able to store measurement data with one resolution type.

- **Tip**
 - When the ‘980 * 980’ setting is selected, it may take a longer software processing time to observe the measurement results.
 - When saving the results obtained with the ‘980 * 980’ setting, the file size becomes very large. Be sure to check the available memory space.
6) Measurement Options

User Calibration
Performs a measurement based on the settings configured on the screen, and it is displayed by clicking the ‘Calib.’ button on the pane of the Measure screen. For ‘User Calibration’, see “User Calibration” in the description of the “2D Chroma Meter CA-2500 Series Instruction Manual” or “2D Chroma Meter CA-2000 Series Instruction Manual”.

Component Measurement
The CA-2500/CA-2000 normally uses three filters, X, Y and Z, for measurement. To save measurement time, select only the filter required. For example, when only luminance is to be measured, select ‘Y’.

Note
Select this option only for relative comparison because the performance of the CA-2500/CA-2000 is guaranteed only when the filter measurement is disabled. Measured values differ depending on whether filter measurement is enabled or disabled. If you require absolute values, disable filter measurement.

Smear Compensation
When any bright light source exists within the image capture area, vertical streaks may appear from the light source due to the CCD sensor’s characteristics. These streaks are called smears. The CCD sensor of the CA-2500/CA-2000 includes smear correcting pixels to correct this. Using the data from these pixels to correct smears on the image, reduces the influence of the generated smears. The performance of the CA-2500/CA-2000 is guaranteed when smear correction is disabled.

None
Smear correction is disabled.

Simple
Removes generated smears by subtracting the data from the smear correcting pixels from the data of the captured image. The entire image after the correction may have slight vertical streaks due to the noise component of the smear correcting pixels.

Linear
Smoothing is applied to the data from the smear correcting pixels before it is subtracted from the data of the captured image. This can suppress the vertical streaks generated by smear correction. If, however, there are two adjacent areas within the same screen that greatly differ in the intensity of emitted light, the smoothing error may become greater near the border of these areas, resulting in vertical streaks along the border.

Note
Smear correction is disabled for the exposure setting with a shutter speed slower than 1/64.

Viewing angle correction
When measuring a display or other objects in which a view angle is generated, all pixels can be corrected to the values obtained by measuring the measurement target from the vertical direction. Check this option when you want to perform this correction. Clicking the ‘Set...’ button displays the ‘Viewing angle correction’ dialog box to set the correction coefficient. For details, see “Viewing Angle Correction Settings” (page 53).

Note
When this box is checked, the measurement result multiplied by the correction coefficient can be obtained as the measurement data.

Image Correction
Select this option to measure a rectangular measurement target with a bezel (a frame surrounding the emission area), such as a display. When evaluating the view angle characteristics of such a measurement target, a rectangular measurement target is displayed as a trapezoid because it is seen
obliquely. When this option is selected, this trapezoid image can be corrected to a rectangle image as seen from the front.

Tip
The image correction bases the calculation on the aspect ratio of the rectangle. It functions normally when the swing angle of the measurement target is within the range in which the height and width of the uncorrected image can be distinguished. In the case of a display with 4:3 aspect ratio, correction can be performed for a swing angle of up to approx. 40 degrees.

In addition, there are cases where the measurement target is displayed in an inclined manner due to the misalignment of installation between the measurement target and the CA-2500/CA-2000. When this option is selected, the image can be corrected so that the measurement target and the display screen of the CA-2500/CA-2000 are parallel in the vertical and horizontal directions.

Check the check box when you want to perform this correction.

Length (vertical)
Enter the vertical length of the measurement target between 0.001 and 100.000 (unit: m).

Length (horizontal)
Enter the horizontal length of the measurement target between 0.001 and 100.000 (unit: m).

Tip
For the ‘Length (vertical)’ and ‘Length (horizontal)’, enter the length of the emission area (inside of the bezel). The installation rotation angle of the measurement target is calculated based on the ratio of the entered ‘Length (vertical)’ to ‘Length (horizontal)’ and the corrected image is displayed.
CHAPTER 2 : Operation Guide

Note
- To perform ‘Image correction’, the value of the lens position is used. Set the lens position carefully.
- There are cases where ‘Image correction’ cannot be performed when the surroundings are bright or the bezel is a bright color such as white or is transparent.
- You cannot check ‘Viewing angle correction’ and ‘Image Correction’ at the same time.

Tip
When you check ‘Image Correction’, set the spot measurement frame after measurement.

7) **Viewfinder View**
Displays the range to be measured in real time. A black and white screen. Check the range to be measured.

8) **Evaluation Area Frame (yellow)**
Used to specify the range for graph display and calculation among the measurement data sent from the CA-2500/CA-2000. Perform position adjustment in the screen which is displayed by clicking the ‘Spot’ button in the pane. (Refer to page 35.)
When spot frames for multi-point measurement have been set, the spot positions will be adjusted accordingly when you adjust the frame position.

9) **Exposure Setting Frame (green)**
The area for calculating the optimum measurement conditions, when ‘Auto’ has been selected for the exposure setting. You can use the mouse to adjust the position of the frame.

Tip
When the evaluation area frame and exposure setting frame overlap each other, you cannot select a desired frame with the mouse. In this case, select the other frame with the mouse, select ‘Send to Back’ from the right-click menu, and click the desired frame.
Immediately after ‘Measure’ is started, you can select the ‘Evaluation area frame’ on a priority basis.

Note
If you click inside the viewfinder view several times after changing the size of the evaluation area frame or exposure setting frame, the mouse cursor may become out of control. If this happens, use the keyboard to change to a software application other than CA-S20w. This recovers control of the mouse cursor and you can return to CA-S20w.
One way to change to another software application with the keyboard is to press the Windows key.

10) **Spot Frame for Multi-Point Measurement (yellow)**
The range for calculation and assignment of spot measurement. You can use the mouse to adjust the position and size of the frame.

11) **Name**
Used to name measurement data. For more information, see “Naming Data, Entering Comments” (page 30).

12) **Measure button**
Starts measurement.
Measure Dialog Box - Finder Button

13) **Exposure Setting Frame**
When this box is checked, the optimum exposure setting frame is displayed.

14) **Evaluation area frame**
When this box is checked, the evaluation area frame is displayed.

15) **Spot Area**
When this box is checked while a viewfinder image is being loaded, the spot measurement frame is displayed.

16) **Saturation pixels**
When the X, Y, or Z checkbox is checked, the pixels that will be processed as being outside the measurement range are displayed in the corresponding color. Clicking the ‘Check’ button will display the saturated pixels and freeze the viewfinder view image. When the ‘Check’ button changes to the ‘Reset’ button, click the ‘Reset’ button to restart the display of the viewfinder view image. The viewfinder view image can also be restarted by modifying the window. The display color can be changed by clicking the Color button.

17) **Contrast emphasis**
When this box is checked, the image is displayed with enhanced contrast.

18) **Show grid**
When this box is checked, grids are displayed.

19) **Exposure Adjustment**
Use these buttons when the image in the viewfinder view is too dark/bright.
2.2.2 Naming Data, Entering Comments

You can name measurement data and enter comments for the data. Measurement data names are displayed in the ‘Sample’ list in the document window. You can change the name and comments of measurement data after measurement. See “Measurement Data Properties” (page 55).

Setting procedure

1. Click the ‘Measure’ button on the Measure screen.

2. In the ‘Name’ field, enter the name you want to assign to the measurement data.
 You can enter up to 30 one-byte characters.

3. Click the ‘Detail…’ button and then configure the automatic numbering and comment settings.

![Diagram of Name window]

4. Click the OK button.

 Tip
 • The settings are not applied until you click the OK button.
 • If you click the Cancel button, the settings are canceled.
Name Dialog Box

Auto Naming
When this box is checked, data is automatically named during measurement. Specify the format of the name to be automatically assigned. The strings in the following tables are treated as special symbols. They are replaced with the string indicating the corresponding data.

<table>
<thead>
<tr>
<th>String</th>
<th>Corresponding data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N</td>
<td>Automatically created number (serial number) assigned to a sample. (The first number in the series can be specified between 0 and 999.)</td>
</tr>
<tr>
<td>$Y</td>
<td>Year of measurement</td>
</tr>
<tr>
<td>$M</td>
<td>Month of measurement</td>
</tr>
<tr>
<td>$D</td>
<td>Day of measurement</td>
</tr>
<tr>
<td>$h</td>
<td>Hour of measurement</td>
</tr>
<tr>
<td>$m</td>
<td>Minute of measurement</td>
</tr>
<tr>
<td>$s</td>
<td>Second of measurement</td>
</tr>
</tbody>
</table>

Enter a combination of these strings in the text box. Up to 30 one-byte alphanumeric characters can be used, including the string replaced according to the table above. If the number of characters exceeds 30, the characters are truncated from the right end.

Note
When Auto Naming is checked, 000 is added as the number that follows 999.

Comment
You can enter up to 256 one-byte characters.
2.2.3 User Calibration

For measurement using the user calibration function, select the calibration method and calibration information.

Setting procedure

1. Click the ‘Measure’ button on the Measure screen. Check the ‘User Calibration’ checkbox under ‘Measurement Options’.

2. Click the ‘Calib.’ button on the pane of the Measure screen.

3. When you select ‘Positional user calibration’ as the method of user calibration, set the type of user calibration.

4. Enter data for calibration calculations.

5. Click the ‘Measure’ button.

 Begins measurement and obtains the measurement results of user calibration calculations.
CHAPTER 2 : OPERATION GUIDE

Measure dialog box - Calib. button

Calibration Method

Positional user calibration
The Positional user calibration is user calibration to calibrate the measurement data in the specified spot area (if the spot is not set, the entire measurement area) by using the RGBW calibration coefficient. Select it to perform this calibration.

Color region user calibration
The Color region user calibration is user calibration to calibrate the measurement data in the entire measurement area by using the calibration coefficient of the chromaticity area of the registered calibration coefficient. (For the measurement data that is outside the chromaticity area of the registered calibration coefficient, user calibration is not performed.) Select it to perform this calibration.

Positional user calibration

Calibration Type
Select the user calibration type.

RGB
Enter the data for calibration calculations in the fields under ‘Red’, ‘Green’, and ‘Blue’ in the list. By clicking each field twice (not double clicking), you can enter data. In the fields under ‘(Before)’, enter measurement values before performing user calibration, and in the fields under ‘(After)’, enter measurement values after user calibration. (The numeric values displayed in ‘White/1 Point’) are not used.)

W (1 Point)
Enter values only in the fields under ‘White/1 Point’. (Entered values under the other fields are not used.)

WRGB
Enter values in all the fields.

Note
You can enter a value between 0.001 and 9,999,999.9999 in each ‘Lv’ field, and a value between 0.001 and 0.9999 (x + y < 1) in each ‘x’ or ‘y’ field.

Tip
You can name each calibration coefficient data.

Color region user calibration
Enter data for calibration calculations in each field of the list. By clicking each field twice (not double clicking), you can enter data. In the fields under ‘(Before)’, enter measurement values before performing user calibration, and in the fields under ‘(After)’, enter measurement values after user calibration.

Note
You can enter a value between 0.001 and 0.9999 in each Range field, between 0.001 and 9,999,999.9999 in each ‘Lv’ field, and between 0.001 and 0.9999 (x + y < 1) in each ‘x’ or ‘y’ field.

Tip
You can name each calibration coefficient data.
User calibration is performed within the range of (±x) and (±y) in accordance with the values entered in the Range (x) and (y) fields.

- Click the ‘Save…’ button to save the settings in the file (*.cuc).
- Click the ‘Load…’ button to read the settings of the calibration coefficients from the file.

The Color region user calibration file (*.cuc) can also be created from measurement data. For details, see “Creating a Color Region User Calibration File” (page 46).

- ‘Color region user calibration’ cannot be performed for measured data. Perform the setting of ‘Color region user calibration’ before measurement.

- If the entered value cannot be used for calibration calculations, a message is displayed.

- When you perform measurement using “User Calibration”, the measurement values are saved as values after “User Calibration” calculations.
2.2.4 Spot Measurement

Used to set spot frames for calculations during spot measurement. The spot frame settings can be changed after measurement. For details, see “Spot Measurement Settings” (pages 42 to 45).

Tip
When ‘Image Correction’ is checked, set the spot measurement frame after measurement.

Measuring procedure

1. Click the ‘Spot’ button on the Measure screen, and click the ‘Layout’ tab.
2. Make settings for ‘Spot’.
3. To save the spot settings in a file, click the ‘File’ tab and then click the ‘Save’ button.

Measure dialog box - spot button

1) Evaluation area frame (yellow)
Used to specify the range for graph display and calculation among the measurement data sent from the CA-2500/CA-2000.
Clicking the icon enables position adjustment with the mouse.
This range is used as the reference for determining the position of the spot measurement frame.
- When the frame is moved or resized, the spot positions are also adjusted accordingly.
- When new spots are aligned, they are automatically aligned within the evaluation area.

2) Spot Frame for Multi-Point Measurement (yellow)
The ranges for performing spot calculation.
You can use the mouse to move or resize the frames.

Tip
The frames can’t extend outside the evaluation area frame.
CHAPTER 2 : Operation Guide

3) Frame

The list displaying the coordinates of the spot measurement frames. For the spot measurement frame for which the ‘Auto Extraction’ check box is checked, the evaluation target is only the portion in which the amount of light exceeds a certain level within the spot measurement frame. Set the threshold value of the amount of light to be evaluated in the Set threshold dialog box displayed with the (8) “Threshold...” button.

Tip
When you check the ‘Auto Extraction’ check box in the arbitrary shape spot, the shape of the spot measurement frame is extracted by the measurement data and the threshold value.

Note
- The spot measurement frame extracted automatically is shifted to the right on the screen by one pixel.
- If there is no data in the spot measurement frame, automatic extraction cannot be performed.

Tip
If the difference in luminance is small in the data in the spot measurement frame, there are cases where automatic extraction fails. In this case, change the threshold and try automatic extraction again.

Tip
If automatic extraction is performed, it may take a long time to display the result, depending on the performance of your PC.
4) **New Spot button**
Displays a dialog box used to create a new circular or rectangular spot measurement frame by entering its coordinates.

5) **New Layout button**
Deletes all existing spot measurement frames if any, and then displays a dialog box used to create a new set of aligned circular or rectangular spot measurement frames.

6) **Edit button**
Displays a dialog box used to edit the selected circular or rectangular spot measurement frames. This button is enabled when a spot is selected in the positioned spot measurement frame or in the coordinates list.

7) **Delete button**
Deletes a spot measurement frame. This button is enabled when a spot is selected in the positioned spot measurement frame or in the coordinates list.

8) **Threshold**
Displays the Set threshold dialog box to set the threshold to perform ‘Auto Extraction’ for the selected spot measurement frame.

9) **Option button**
Displays the Option dialog box. By double clicking the button, you can set the size and the shape of the spot measurement frame to be added.

10) **Evaluation Area Size Display**
Displays the currently set evaluation area.

11) **Cursor Position**
Displays the coordinates of the cursor position.

12) **Spot tools**
These tool icons are used for operations concerning spot measurement frames and images.
- Select a spot measurement frame.
- Select an evaluation area frame.
- Position a rectangular spot by dragging the tool icon.
- Position a circular spot by dragging the tool icon.
- Position an arbitrary shape spot by clicking the tool icon. By repeatedly clicking, you can draw a polygonal shape. At the last vertex, double click the mouse button. You can specify a shape with up to 100 vertexes.
- Place a circular or rectangular spot measurement frame created under the conditions specified with the ‘Option’ dialog box. The frame will be placed with its center aligned at the double-clicked position.
- Enlarge an image.
- Reduce an image.
- Restore an enlarged image to the original size.

Note
The position and size of each spot may be adjusted by the software’s internal calculations.
CHAPTER 2 : Operation Guide

Create New dialog box

13) Position
Enter the coordinates of a new circular or rectangular spot measurement frame.

Tip
When a user scale has been set, use the scale to input the values.

14) Create New button
Displays a spot measurement frame based on the entered values.

New Layout dialog box

15) Layout
Automatically generates a circular or rectangular spot measurement frame.
Spot Count
Sets the number of spots. You can set up to a total of 2500 spot frames.

Note
Measuring a large number of spots at a resolution of 980 * 980, consumes a lot of memory depending on the number of data items per file. When a file reaches 25 measurement data items, it is recommended to save the file, close it, and then create a new one.

Note
When many spots are set and they overlap, it may take some time before the result is shown depending on the performance of the PC.

Spot Size
Sets the spot frame diameter or side length. (D in the figure on the right)
The maximum size that can be set is (evaluation area size − offset) ÷ (number of spots).

Offset
Sets the amount of offset (gap size) from the evaluation area.
(Top, Left, Bottom and Right refer to a, b, c and d in the figure on the right respectively.)

Tip
The size is normally expressed in measurement pixels (dots).

Note
The positions of the spots are determined by assigning higher priority to the offset at the top and left.

16)Shape
Circle / Rectangle
Used to select the spot shape.

17)SetUp button
The spot measurement frame is aligned and displayed according to the specified input values. Once you set the frame and then change any of the input values and click the ‘SetUp’ button, the message “OK to delete?” is displayed.
CHAPTER 2 : Operation Guide

Edit dialog box

18) Position
Displays the coordinates of the selected circular or rectangular spot measurement frame.
You can change the previously specified coordinates by inputting the desired values.

19) Previous and Next buttons
This option is enabled when more than one spot measurement frame is selected. The settings for the
spot measurement frames can be changed in turn.

Set threshold dialog box

20) Selected Spot
Displays the number of the selected spot measurement frame.

21) Select threshold type
Displays the number of the selected spot measurement frame.
Auto threshold
The CA-S20w calculates the threshold value at the time of automatic extraction.
Absolute Value (Lv)
The value (Lv value) entered in the ‘Threshold’ field is specified as the threshold value. Enter a
numeric value between 0 and 9,999,999.9999.
Ratio in measured Lv range (max-min)
Of the measurement data in the spot measurement frame (Lv value), specify the ratio in the
‘Threshold’ field with the maximum value as 100 and the minimum value as zero. You can enter a
value between 0 and 100.00.
NOTE
Set the evaluation area before setting spots.

• When ‘Auto Extraction’ is not performed at a circular or rectangular spot
 If you set spots and then resize the evaluation area, the size and positions of spots may be changed as follows:

 If the evaluation area has been reduced:
 The size of spots becomes smaller, according to either the height or width of the evaluation area, whichever has been reduced with a higher ratio.

 If the evaluation area has been enlarged:
 The size of spots becomes larger, according to either the height or width of the evaluation area, whichever has been enlarged with a smaller ratio.

• When ‘Auto Extraction’ is performed and when an arbitrary shape spot is used
 If an automatic extraction spot or an arbitrary shape spot exists, the evaluation area is fixed and it cannot be changed.
2.2.5 Spot Measurement Settings

When you select measurement data from the measurement data list and select ‘Spot Setting’ in the right-click menu, the Measuring Data-Spot-Data Name dialog box is displayed. If you select two pieces of measurement data while holding down the Shift key, you will select all the measurement data between the two. In this case, the Measuring Data-Spot-Data Name dialog box will show the details of the last measurement data in the list. The Measuring Data-Spot-Data Name dialog box allows you to choose various settings for observing the measurement data with spot objects. The settings specified in this dialog box are saved individually for each piece of measurement data.

Layout tab

Specify the settings to observe measurement data with spot objects.

13)Spot Value
Displays the measurement data for the selected spot measurement frame. Five items from the left of the list on the Numeric tab are displayed.

14)Image... button
Displays the Option dialog box. You can select whether to display the viewfinder view in ‘RGB’ or ‘PseudoColor’. You can also specify the size and color of the cross which indicates the center of the spot measurement frame.

15)Property... button
Displays a dialog box that allows you to set the properties of the viewfinder image. When the viewfinder image is displayed with ‘RGB’, the contents of the ‘View’ tab are the same as those shown in the ‘Image’ frame of the pseudocolor object’s properties (except that ‘Display Only Evaluation Area’ is not displayed). See page 100. The contents of the ‘Setting RGB View’ tab are the same as the properties of the RGB object. See page 120. When the viewfinder image is displayed with ‘PseudoColor’, the contents of the ‘Setting Image’ tab are the same as the properties of the pseudocolor object. See page 100. The contents of the ‘View’ tab are the same as those shown in the ‘Image’ frame of the pseudocolor object’s properties. See page 100.
16) Cross Line
When this option is checked, a cross is displayed to indicate the center of a circular or rectangular spot measurement frame.

Options 1 to 12 are the same as the options displayed on the screen when the ‘Spot’ button in the Measure dialog box is clicked. See page 35.

Numeric tab
Displays measurement data for each spot measurement frame. This tab is used to set the display items and the calculation for individual spot measurement frames.

1) Color Values... button
Displays the View Color Select dialog box which is used to specify items displayed below the spot objects.

Note
The Area (cm²) is an approximate value obtained by using the value of the lens position. If the lens position is ‘inf’, the area is displayed as ‘---’.

Tip
The standard deviation is calculated using the following formula where \(n \) is the number of spots, \(x_i \) (\(i = 1, 2, ..., n \)) is the displayed value for the spot, and \(\bar{X} \) is the average.

\[
\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{X})^2}
\]

Calculate setting
Used to configure various settings for the spot measurement data selected in the list. You can perform user calibration or set the tolerance for individual spot frames for multi-point measurement. By selecting two pieces of spot measurement data while holding down the Shift key, you will select all the measurement data between the two. You can add selected data by selecting spot measurement data while holding down the Ctrl key.
2) Ignore Pixels... button
This button is enabled when spot measurement data is selected in the list. Clicking this button displays a dialog box to specify pixels to be ignored for spot calculation. After the setting is made, the pixels with an amount of light lower than or equal to the threshold value (%) are treated as ignored pixels for the measurement data inside the spot measurement frame. The threshold value is set as a percentage with the assumption of the maximum amount being 100 and the minimum amount being 0. When the threshold value is 100%, all pixels inside the spot measurement frame are ignored. When the value is 0%, the pixels with the minimum amount of light inside the frame are ignored.

3) Tolerance... button
This button is enabled when spot measurement data is selected in the list, and displays a dialog box that allows you to set the tolerance. Once set, the selected measurement data is judged. When the result is NG, the cells of the measurement data of the spot frame and the spot object are shown in red.

4) User Calibration... button
This button is enabled when spot measurement data is selected in the list, and displays a dialog box that allow you to set the user calibration. The setting procedure is the same as that for the user calibration of an entire screen. See page 32.

5) Comment... button
This button is enabled when spot measurement data is selected in the list. Clicking this button displays a dialog box to specify a comment for the spot measurement data. The comment can be entered with up to 10 one-byte characters.
1) **Setting file**

- Click the ‘Save...’ button to save the setup data in a file. This allows you to share the setup data or use the predefined setup information for other measurement data.

 Tip
 When saving spot settings, save them in a file with a name related to the measurement data. Note that a file saved with a different resolution cannot be read.

- Click the ‘Load...’ button to read out the setup data from a file.
2.2.6 Creating a Color Region User Calibration File

The calibration coefficient used for the Color region user calibration can be created and saved as a user calibration file. To do this, click ‘Create color region user calibration file’ from ‘Tool’ on the menu bar on the main screen.

Create color region user calibration file dialog box

Enter data for calibration calculations in each field of the list. In the fields under ‘(Before)’, enter measurement values before performing user calibration, and in the fields under ‘(After)’, enter measurement values after user calibration. When you click the ‘Add data’ button, the Add color region user calibration data dialog box appears. From this dialog box, the currently displayed measurement data can be added as data (Before calibration).

By selecting data (row) in the list and clicking each field, you can enter and edit data. In the field ‘(After)’, you can enter measurement data measured with a spectrophotometer such as the CS-2000. When you copy a character string consisting of three data items from Excel or other applications and paste it in the ‘Lv (After)’ field, they are entered in the fields ‘Lv (After)’, ‘x (After)’, and ‘y (After)’.

Tip

- You can enter a value between 0.001 and 0.9999 in each Range field, between 0.001 and 9,999,999.9999 in each ‘Lv’ field, and between 0.001 and 0.9999 (x + y < 1) in each ‘x’ or ‘y’ field.
- If the entered value cannot be used for calibration calculations, a message is displayed.

Tip

- You can name each calibration coefficient data.
- User calibration is performed within the range of (±x) and (±y) in accordance with the values entered in the Range (x) and (y) fields.

- When you select data (row) in the list and click the ‘Delete data’ button, the selected data is deleted.
- Click the ‘Save’ button to save the settings as the Color region user calibration file (*.cuc).
- Click the ‘Load’ button to read the settings of the calibration coefficients from the file.

Tip

When performing user calibration before performing measurement, the color region user calibration file (*.cue) can be read out by clicking the ‘Calib.’ button on the pane of the Measure screen and then clicking the ‘Load…’ button. See ’User Calibration’ (page 32).
Add color region user calibration data dialog box

When you select spot data used for calibration data from the list and click the OK button, calibration data is added to the list of the Create color region user calibration file dialog box.
2.2.7 Performing Continuous Measurement

Measurements are automatically repeated at specified intervals, and the measurement data for each spot frame is displayed in a trend graph. This is done with the automation function using Excel’s macro program.

Note
For Excel 2010, this function operates on the 32-bit version of the software. This function does not operate on the 64-bit version of Excel 2010.

Preparation 1
Select ‘Regional and Language Options’ in the Control Panel of your OS, and specify the time format to 24-hour indication.

Preparation 2
Set the macro security level of Excel installed on the PC to ‘Medium’.

1. Start Excel.
2. Select *Tool* - *Option* from the menu.
 The Option dialog box appears.
3. Click the ‘Security’ tab and click the ‘Macro Security’ button.
 The Security dialog box appears.
4. On the ‘Security Level’ tab, select ‘Medium’ and click the OK button.
5. In the Option dialog box, click the OK button.

Note
The macro security setting is retained in Excel. If you select the Medium level only when you use the automation function of CA-S20w, reset the setting to the required level after the operation.

Preparation 3
Open the document file of CA-S20w and connect the PC to the instrument. The document file should not contain any measurement data.

Measurement procedure

1. In the start menu, select All Programs and then select KONICAMINOLTA - CA-S20w - Continuous. Excel starts and the Security Warning dialog box appears.
2. Click the ‘Enable Macros’ button.
 Excel’s continuous measurement program starts.
3. On the Excel worksheet, click the ‘Continuous Measurement’ button.
 The Continuous Measurement dialog box appears.
4. Click the ‘New’ button.
 The New dialog box appears.
5. Specify the start time, the measurement interval and the number of measurements, and then click the OK button.
6. In the Continuous Measurement dialog box, click the ‘Start’ button.
The instrument waits until the specified start time arrives. When the time arrives, it starts continuous measurement. When continuous measurement finishes, the data is displayed on the worksheet. The data is also shown in the document file of CA-S20w. When spot frames have been set, their data is retrieved and the trend graph is updated on each occasion. You can register the continuous measurement settings with the Work List or save them in a file.
2.2.8 Performing Illumination Measurement

By converting the luminance value into the illumination value, the luminance of the measurement target can be measured from the measurement value (luminance) with the CA-2500/CA-2000. Select ‘Illumination’ from the ‘Color’ selection combo box on the main screen and select the ‘Illuminance Calculation’ tab in the ‘Calculation Settings’ dialog box that can be displayed by clicking the ‘Settings’ button to the right of the ‘Color’ selection combo box. This setting is saved for the whole document instead of being saved for each measurement data. The settings saved here are saved for the whole document instead of being saved for each measurement data.

Calculation Settings dialog box - Illuminance Calculation tab

Tip
The illumination is calculated using the following formula.

\[\text{Illumination (Ev)} = \frac{\text{Luminance (Lv)} \times \pi}{\text{Reflectance}} \]
2.2.9 Calculation Using Measurement Data as Target Data

You can use one measurement data saved in the document as target data to calculate other measurement data (contrast calculation and backlight cancel calculation).

To do this, click the ‘Settings’ button to the right of the ‘Color’ selection combo box on the main screen and select the Target Data tab in the displayed Calculation Settings dialog box.

This setting is saved for the whole document instead of being saved for each measurement data.

Contrast calculation

After target data is saved, $L_v(\text{Contrast})$ is enabled in the ‘Color’ selection combo box. When you select it, the contrast between the target data and selected measurement data is calculated and displayed.

$L_v(\text{Contrast})$ is calculated by the following formula:

$$
L_v \text{ (Contrast)} = \frac{L_v \text{ of the measurement data}}{L_v \text{ of the target data}} \times 100
$$

Backlight cancel calculation

After target data is saved, backlight cancel calculation is applied to all colorimetric data when you select measurement data.

You need to save backlight data as the target data.

For backlight cancel, see “Backlight Cancel” in the description of the “2D Chroma Meter CA-2000 Series Instruction Manual”.

Calculation Settings dialog box - Target Data tab

Set Measurement data as Target Data

When this option is checked, the measurement data specified in the Name combo box can be used as target data. When the option is not checked, target data is regarded as unregistered and calculation is disabled.

When this option is checked, you can select one of the two calculation types. You cannot use both calculations at the same time.

\textbf{Note}

When ‘Set Measurement data as Target Data’ is checked, ‘Ignore Pixels’ cannot be set.

After target data is saved, the name of the target data and the calculation type are displayed on the status bar. A red mark appears on the bar to indicate that the function is enabled.

To cancel the registration of the target data, uncheck the check box and click the OK button. Off appears next to Target Data on the status bar.
2.2.10 Specifying pixels to be ignored in the image inside the evaluation area

When measuring a target in which both bright and dark images are mixed in the evaluation area, such as characters on a car speedometer, the data from areas with a small amount of light vary widely due to exposure shortage and displaying such data may make the result difficult to see. By setting “ignored pixels”, you can process areas with an amount of light less than specified as “Under”. For the pixels that have been judged as “Under”, the luminance or chromaticity are not calculated and the result is not displayed. These pixels are also excluded from the statistics calculation.

In the main screen, click the ‘Settings’ button to the right of the ‘Color’ selection combo box, and select the Ignore Pixels tab from the displayed Calculation Settings dialog box. The settings in this dialog box are stored for the document, not for the measurement data.

Calculation Settings dialog box - Ignore Pixels tab

![Calculation Settings dialog box - Ignore Pixels tab]

Ignore Pixels
When this option is checked, the items for ‘Threshold’ are enabled and the settings are reflected in the document.

Color Value
Select one of the tristimulus values of Y (Lv), X, and Z.

Threshold (%)
Specify the percentage with the assumption of the maximum amount of light of the measurement data inside the evaluation area being 100 and the minimum amount being 0. The pixels with an amount of light lower than or equal to the specified threshold value are treated as ignored pixels.
When the threshold value is 100%, all pixels inside the evaluation area are ignored. When the value is 0%, the pixels with the minimum amount of light inside the area are ignored.

Note
When ‘Ignore Pixels’ is checked, ‘Target Data’ cannot be set.

After the Ignore Pixels setting is made, the color value and threshold value are highlighted in red on the status bar.

![Target Data and Ignore Pixels]

When the Ignored Pixels setting is not used, Off is displayed in the corresponding space on the status bar.
2.2.11 Viewing Angle Correction Settings

When measuring a display or other objects in which a view angle is generated, all pixels in the evaluation area can be corrected to the values obtained by measuring the measurement target from the vertical direction.

Click the ‘Set’ button to the right of the ‘Viewing Angle correction’ check box in the ‘Measure’ dialog box. This setting is saved for the whole document instead of being saved for each measurement data.

Viewing angle correction dialog box

Area split
- Set the number of areas into which the evaluation area is divided.
- Enter a numeric value between 2×2 and 25×25.
- Clicking the ‘Set’ button sets a number for each area and displays the list for entering the correction coefficient.

Correction Coefficient
- Set the correction coefficient for each area.
- For the correction coefficient, enter the ratio obtained using the following formula.
- By clicking each field twice (not double clicking), you can enter data.

<table>
<thead>
<tr>
<th>Measurement value by the CA-2500/CA-2000 (Lv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement value (Lv) measured from the vertical direction with a luminance meter such as the CS-100</td>
</tr>
</tbody>
</table>

Enter a numeric value between 0.001 and 2.000.
Tip
By performing linear interpolation based on the correction coefficient set for each area, the correction coefficients for all pixels are obtained.

Reset
All the correction coefficients are reset to 1.000.
2.2.12 Measurement Data Properties

When you select measurement data from the measurement data list and then select ‘Property’ from the right-click menu, the Data Property dialog box appears. In the Data Property dialog box, you can set information about the selected measurement data. The settings in this dialog box are saved for each measurement data.

Data Property dialog box

![Data Property dialog box diagram]

Name
Displays the name of the data specified at the time of measurement. This name can be edited.

Comment
Displays the comment about the data specified at the time of measurement. This comment can be edited.

Condition Frame
Displays the measurement conditions of the data specified at the time of measurement. This frame is the same as the condition frame on the main screen.
2.3 Observation

2.3.1 Displaying Measurement Data
Use the document window to observe measurement results.

2.3.2 Observing Luminance/Chromaticity Distribution
[Pseudocolor Graph]
The pseudocolor graph displays measurement results.
The graph lets you observe the luminance/chromaticity distribution.

Selecting measurement data to display

2. Select the measurement data to observe from the Sample list.
The selected measurement data is displayed.

When switching between measurement data, the vertical and horizontal axes of the pseudocolor graph are set to the "automatic" settings.
Selecting colorimetric data

1. Select the pseudocolor graph for which you want to change the Color setting.

2. Select the desired colorimetric data from the ‘Color’ selection combo box.

Checking value of specified location

1. Place the mouse cursor on the pseudocolor graph and left-click the mouse button while holding down the Shift key.

2. A ‘Mark’ is displayed at the cursor position and the coordinates and measurement values of the ‘Mark’ position are displayed under the pseudo color.
 - Up to 20 ‘Mark’ can be displayed.

Setting a temporary evaluation area

1. Place the mouse cursor on the pseudocolor graph and drag the mouse while holding down the Shift key to specify the area.

2. The coordinates of the specified area and the statistical data for the specified area are displayed below the pseudocolor graph.

Note

When you set a ‘Mark’ after a temporary evaluation area is set, the temporary evaluation area is reset. Set the temporary evaluation area after setting ‘Marks’.
CHAPTER 2: OPERATION GUIDE

Limiting display range (Zoom In)

1. Place the mouse cursor on the pseudocolor graph and left-click the mouse button while holding down the Shift key and Ctrl key.
 You can also scroll the mouse wheel upward while holding down the Shift key and Ctrl key.

 The zoomed area is shown in pink in the data display box of the main screen. The area may not be shown when the scaling factor is large. In such a case, decrease the size of the pseudocolor object in edit mode (page 90).

 To reduce the display size after zooming in the image, place the mouse cursor on the pseudocolor graph and right-click the mouse button while holding the Shift key and Ctrl key. You can also scroll the mouse wheel downward while holding down the Shift key and Ctrl key.

 ![Pseudocolor graph with zoomed area highlighted in pink]

Moving the display range after zooming in

1. Place the mouse cursor on the pseudocolor graph and drag it while holding down the Space bar.
 The changed position is displayed in pink in the data display box on the main screen.

 Note
 - *When the graph size is small on the screen, the position of an area may be specified by the unit of several pixel pitches.*
 - *When zooming in an image, the position determined with the mouse may be deviated by approx. one pixel.*

Making graph settings

1. Move the mouse cursor into the pseudocolor graph.
2. Right-click on the pseudocolor graph, and select ‘Property’ from the pop-up menu that appears.
 For more information, see “Pseudocolor Object” (page 100).

Sending data

1. Move the mouse cursor into the pseudocolor graph, or use the mouse to specify an area in it.
2. Right-click on the pseudocolor graph, and select ‘Data Send’ from the pop-up menu that appears.
 For more information, see “Sending Data” (page 78).
2.3.3 Viewing the Distribution Cross Section of Luminance/Chromaticity [Section]

This option allows you to observe the cross section of luminance and chromaticity distributions.

Selecting measurement data to display

1. Select ‘Section’ in the page selection tabs.

2. Select the measurement data to observe from the Sample list.

 The selected measurement data is displayed.

 ![Image of screen showing measurement data selection]

 Note

 When switching measurement data, the vertical and horizontal axes of pseudocolor graph and the horizontal axis of Section graph are set to the “automatic” settings.
CHAPTER 2 : Operation Guide

Selecting colorimetric data

1. Select the Section for which you want to change the Color setting.
2. Select the desired colorimetric data from the ‘Color’ selection combo box.

Checking the horizontal and vertical cross sections that pass through the specified location

1. Place the mouse cursor on the pseudocolor graph and left-click the mouse button while holding down the Shift key.
2. A ‘Mark’ is displayed at the cursor position and the cross section is displayed below and on the right of the pseudocolor graph.
 • Up to 20 ‘Mark’ can be displayed.

Checking the cross section in an arbitrary direction

1. Place the mouse cursor on the pseudocolor graph and left-click the mouse button while holding down the Ctrl key.
2. Place the mouse cursor on another area on the pseudocolor graph and left-click the mouse button while holding down the Ctrl key.
3. An ‘Arbitrary Line’ that passes through two points is displayed on the pseudocolor graph and the cross section is displayed below and on the right of the pseudocolor graph.
 • Up to 20 ‘Arbitrary Line’ can be displayed.

Setting a temporary evaluation area

1. Place the mouse cursor on the pseudocolor graph and drag the mouse while holding down the Shift key to specify the area.
2. The coordinates of the specified area are displayed below the pseudocolor graph.
Note

When you set a ‘Mark’ or ‘Arbitrary Line’ after setting a temporary evaluation area, the temporary evaluation area is reset. Set the temporary evaluation area after setting a ‘Mark’ or ‘Arbitrary Line’.

Limiting display range (Zoom In)

1. Place the mouse cursor on the pseudocolor graph and left-click the mouse button while holding down the Shift key and Ctrl key. You can also scroll the mouse wheel upward while holding down the Shift key and Ctrl key.

To reduce the display size after zooming in the image, place the mouse cursor on the pseudocolor graph and right-click the mouse button while holding the Shift key and Ctrl key. You can also scroll the mouse wheel downward while holding down the Shift key and Ctrl key.
CHAPTER 2 : OPERATION GUIDE

Moving the display range after zooming in

1. Place the mouse cursor on the pseudocolor graph and drag it while holding down the Space bar.
 The changed position is displayed in pink in the data display box on the main screen.

Making graph settings

1. Move the mouse cursor into the pseudocolor graph.

2. Right-click on the pseudocolor graph, and select ‘Property’ from the pop-up menu that appears.
 For more information, see “Cross Section Diagram Object” (page 112).

Sending data

1. Move the mouse cursor into the pseudocolor graph, or use the mouse to specify an area in it.

2. Right-click on the pseudocolor graph, and select ‘Data Send’ from the pop-up menu that appears.
 For more information, see “Sending Data” (page 78).
2.3.4 Observing the Luminance/Chromaticity in Three Dimensions [3D Graph]

The 3D graph displays the luminance/chromaticity distribution.

Selecting measurement data to display

1. Select ‘3D’ from the page selection tabs.
2. Select the measurement data to observe from the Sample list.
 The selected measurement data are displayed.

 Note
 When switching measurement data, the vertical and horizontal axes of pseudocolor graph is set to the “automatic” settings.

Selecting colorimetric data

1. Select the 3D graph.
2. Use the ‘Color’ selection combo box to select the desired colorimetric data.
CHAPTER 2 : OPERATION GUIDE

Changing orientation

1. Move the mouse cursor onto the 3D graph.

2. Drag the mouse cursor while holding down the Space key or the Shift key.
 Moving left/right rotates the graph.
 Moving up/down changes the angle of elevation.

Making graph settings

1. Move the mouse cursor into the 3D graph.

2. Right-click on the 3D graph, and select ‘Property’ from the pop-up menu that appears.
 For more information, see “3D Object” (page 111).
2.3.5 Observing Chromaticity Distribution

[Chromaticity Diagram]

The chromaticity dispersion of the measurement data is displayed in the chromaticity diagram. The pseudocolor graph and chromaticity distribution graph are displayed in the same page, letting you observe their correlation.

Selecting measurement data to display

1. Select ‘x-y’ from the page selection tabs.
2. Select the measurement data to observe from the Sample list.
 - The selected measurement data are displayed.
 - By selecting two pieces of measurement data while holding down the Shift key, you will select all the measurement data between the two. If ‘Draw Multi Data’ has been checked in the pop-up menu displayed by right-clicking the chromaticity diagram, all the selected measurement data will be displayed on the chromaticity diagram.
Checking chromaticity of specified location in chromaticity coordinates

1. On the pseudocolor graph, place the mouse cursor on a desired point while holding down the Shift key.

 The coordinates and measurement value at the mouse cursor position are displayed below the pseudocolor graph. The chromaticity at the mouse cursor position is displayed by a cursor in the chromaticity diagram.

2. Clicking the mouse button on the pseudocolor graph while holding down the Shift key retains the cursor display on the pseudocolor graph and chromaticity diagram.

Making graph settings

1. Move the mouse cursor into the chromaticity diagram.

2. Right-click on the chromaticity diagram, and select ‘Property’ from the pop-up menu that appears.

 For more information, see “xy-Chromaticity Diagram Object” (page 115).

Limiting display range (Zoom In)

1. Place the mouse cursor on the chromaticity diagram and left-click the mouse button while holding down the Shift key and Ctrl key.

 To reduce the display size after zooming in the image, place the mouse cursor on the chromaticity diagram and right-click the mouse button while holding the Shift key and Ctrl key.
2.3.6 Observing Several Pieces of Measurement Data
[Chromaticity Diagram (Multiple Selection)]

The chromaticity distribution data of multiple measurements can be displayed on one chromaticity diagram.

Selecting measurement data to display

1. Select ‘x-y (Multi-Data)’ from the page selection tabs.
 In the pop-up menu displayed by right-clicking on the chromaticity diagram, ‘Draw Multi Data’ has been checked.

2. While holding down the Shift key, select two pieces of measurement data from the Sample list.
 All pieces of measurement data between the selected two pieces of data are displayed on the chromaticity diagram.

Making graph settings

1. Move the mouse cursor into the chromaticity diagram.

2. Right-click on the chromaticity diagram and select ‘Property’ from the pop-up menu that appears.
 For more information, refer to “xy-Chromaticity Diagram Object” (page 115).

Limiting the display range (Zoom In)

1. Place the mouse cursor on the chromaticity diagram and left-click the mouse button while holding down the Shift and Ctrl keys.
 To reduce the display size after zooming in the image, place the mouse cursor on the chromaticity diagram and right-click the mouse button while holding down the Shift and Ctrl keys.
2.3.7 Observing Luminance/Chromaticity for Spots
[Spot Measurement Graph]

The multiple-point measurement graph outputs the average value for multiple specified areas.

Display procedure

1. Select ‘Spot’ from the page selection tabs.
2. Select the desired measurement data from the Sample list.
 The measurement data are displayed.

Selecting the colorimetric data displayed in the pseudocolor graph

1. Use the ‘Color’ selection combo box to select the desired colorimetric data.

Making graph settings

1. Move the mouse cursor into a graph.
2. Right-click on the graph, and select ‘Property’ from the pop-up menu that appears.
 For more information, see “Pseudocolor with Spot Object” (page 107).
Changing the settings of the spot measurement frame

1. Double-click the measurement data selected in the data list. The Measuring Data-Spot-Data Name dialog box appears.
2. Click the ‘Layout’ tab and specify the appropriate settings. For details about the setting, see “Spot Measurement” (page 35).

Note

In spot measurement, the position and size of each spot is adjusted according to the measurement data’s evaluation area displaying the set spot frames. The average value in the spot area is calculated after adjustment. When the size of the specified spot setting is different from the size of the measurement data’s evaluation area, the area for calculating the average value changes. The position and size after adjustment are applied to the spot frames displayed in the pseudocolor graph.

Changing the items displayed for the spot measurement

1. Double-click the measurement data selected in the data list. The Measuring Data-Spot-Data Name dialog box appears.
2. Click the Numeric tab and select the colorimetric data you want to display in the View Color Select dialog box which is displayed by clicking the ‘Color Values...’ button.

Note

These changes are effective only for the selected measurement data.

Measuring the distance between luminance centroids of two spot measurement frames

1. Place the mouse cursor on the graph.
2. Right-click the mouse button on the graph and select ‘Measure luminance centroid distance’ from the pop-up menu. Or, select ‘Measure luminance centroid distance’ from ‘Tool’ on the menu bar.
 • The Measure luminance centroid distance dialog box is displayed.

3. Select two spot measurement frames for which the distance between the luminance centroids are to be measured and click ‘Measure’ button.
 • The distance between the two luminance centroids is displayed.

Note

The luminance centroid distance is an approximate value obtained by using the value of the lens position. If the lens position is ‘inf’, the luminance centroid distance is displayed as ‘---’.
2.3.8 Observing Color Difference for Spots [Color Difference]

Displays color difference from the target data in each spot measurement frame. The direction and amount of the difference on the chromaticity diagram is displayed. You can use the median value of the screen or can specify a desired value as the reference for the difference amount.

Display procedure

1. Select ‘Color Diff.’ from the page selection tabs.

2. Select the desired measurement data from the Sample list.
 The measurement data is displayed.

Changing the colorimetric data displayed as an RGB image (or on a pseudocolor graph)

1. Use the ‘Color’ selection combo box to select the desired colorimetric data.
CHAPTER 2 : OPERATION GUIDE

Making graph settings

1. Move the mouse cursor into a graph.

2. Right-click on the graph and select ‘Property’ from the pop-up menu that appears.

3. Select the ‘Spot Options’ tab for ‘Pseudo Color with Spot Setting Frames’.
 For more information, refer to “Pseudocolor with Spot Object” (page 107).

 ![Image of the Pseudo Color with Spot Setting Frames dialog box]

 When ‘Show Difference Circle’ is checked, a circle will be displayed when the color difference exceeds the chromaticity limit.

 ![Image of a graph with a difference circle]
2.3.9 Observing Chromaticity/Luminance Unevenness [Mura Control Graph]

The Mura control graph highlights partial unevenness in the display, such as points or streaks, while reducing the influence of moderate unevenness in the entire display such as shading. The operations for this graph are the same as in “Observing Luminance/Chromaticity Distribution [Pseudocolor Graph]”.

Note

With the value of ‘Pixel’ on the Setting Mura tab in the Mura-Graph Property dialog box, it may take some time before the result is displayed depending on the performance of your PC.
2.3.10 Observing the Variation of Luminance/Chromaticity

[Histogram]

The Histogram displays the degree of fluctuation of luminance and chromaticity distribution. The object can be observed with the combination of a pseudocolor graph and histogram graph.

Selecting measurement data to display

1. Select ‘Histogram’ in the page selection tabs.

2. Select the measurement data to observe from the Sample list.
 The selected measurement data is displayed.

 When switching measurement data, the vertical and horizontal axes of histogram graph are set to the “automatic” settings.

Selecting colorimetric data

1. Select the histogram for which you want to change the Color setting.

2. Select the desired colorimetric data from the ‘Color’ selection combo box.

Making graph settings

1. Move the mouse cursor into a graph.

2. Right-click on the graph, and select ‘Property’ from the pop-up menu that appears.
 For more information, see “Histogram Object” (page 121).
2.3.11 Displaying Multiple Graphs Simultaneously [Multi Screen]

Multiple measurement data and graphs can be displayed side by side on one screen. This is useful for the observation of secular changes by displaying pseudocolor images of continuous measurement data, or for various analysis by displaying different graphs for one measurement result.

Display procedure

1. Select View - ‘Multi screen’ from the menu.
 The ‘Multi screen’ window appears.

2. On the document window, right-click the graph that you want to display on the Multi-Screen. When the pop-up menu appears, select ‘Multi screen’.
 Or, drag the graph to the ‘Multi screen’ window and drop it.
 The graph is displayed on the ‘Multi screen’ window.

3. Repeat step 2 to add graphs to the Multi Screen as much as you want.

 Tip
 The ‘Multi screen’ window can be moved by dragging it with the mouse. You can change the measurement data or tab on the document window and select the desired graph to be displayed on the Multi-Screen.

Changing the display size

You can change the display size inside the ‘Multi screen’ window by moving the slider at the bottom of the screen.
Saving the Multi Screen

1. Select *File - Save* from the menu of the ‘Multi screen’ window.

The Save As dialog box appears.
In the Save As dialog box, select the destination folder.
For the file type, select either ‘Multi screen (24bit).mcb’ or ‘Multi screen (8bit).mcb’.

2.3.12 Linking the Chromaticity Diagram and Pseudocolor Images [xy Graph Link]

A specified range of points distributed in the chromaticity diagram space can be displayed in a different color on the pseudocolor graph.
This is useful for checking where the points which are away from or which aggregate on the chromaticity distribution are located on the pseudocolor image.

![xy Graph Link Image]

Display procedure

1. Select *View - xy Graph Link* from the menu.

The ‘xy Graph Link’ window appears.

2. Select the chromaticity diagram on the left, and specify the range by dragging the mouse on the chromaticity diagram while holding down the Shift key.

The measurement points of the chromaticity that is not within the specified range are displayed in “Out of range color” (pink by default) on the pseudocolor image on the right.

Tip

The “Out of range color” can be changed as desired.
2.4 Creating Reports (Printing and Sending Data)

2.4.1 Printing

Prints the data view screen image.

Printing procedure

1. Select *File - Print* from the menu.
 - The Print dialog box appears. Make print settings in ‘Property’ as with other Windows software.

2. Click the OK button.
 - The data view screen image is printed. To check the print image in the print preview and then print it, see “Print Preview” below.

Print Preview

1. Select *File - Print Preview* from the menu.
 - The print image is previewed.

 Note
 If the object appears out of the printing range, change the printing orientation (portrait or landscape) or adjust the position of the object.
 For the procedure for adjusting the position, see “Customization”.

2. To print the previewed image, click the Print button.
 - To change each setting for the printer, select *File - Page Setup* from the menu in the preview window and make print settings.
Page Setup

1. Select File - Page Setup from the menu.
 The Printer Settings dialog box appears.
 Set the paper for printing, scaling ratio, margin, etc.
 (For ‘Printer Settings’, see the printer instruction manual.)

2. Click the OK button.

Tip
When the data view is set to the edit mode, the printing range frame appears. For the procedure to set the edit mode, see “Edit Mode” (page 90).

Note
After changing paper settings, an object exceeding the printing range is displayed as “separated” for display and printing. Adjust the position of the object.
For a way of adjusting the position, see Pages 93 - 95.

Note
The page setup data is not saved in the document.

2.4.2 Pasting Graphs into Other Software
You can paste selected graphs into Word or Excel via the clipboard. Graphs are pasted in bitmap format.

Procedure

1. Select Edit from the menu and make sure ‘Edit Mode’ has no check mark next to it.

2. Click in the desired graph to select it.

3. Select Edit - Copy from the menu.

4. Open the application to paste to, and use its paste function to paste the graph.
2.4.3 Sending Data

The colorimetric data displayed on the pseudocolor graph can be sent to the external software via the clipboard.

To send data, place the mouse cursor on the pseudocolor graph or specify the area using the mouse. Then, right-click the mouse on the pseudocolor graph to display a pop-up menu which lists the items that can be sent with the Data Send option. Select the item you want to send and execute the Data Send command.

Procedure

1. Select *Edit* from the menu and make sure ‘Edit Mode’ has no check mark next to it.

2. Click in the desired graph to select it.

3. Right-click on a graph and select one of the ‘Send: Evaluation Area’ menu items from the pop-up menu that appears.

 The data is placed on the clipboard.

4. In the destination software, select Paste.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Displayed Object</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send: Area</td>
<td>Pseudocolor</td>
<td>Transmits the surface data.</td>
</tr>
<tr>
<td></td>
<td>Spot</td>
<td>The table below shows the relationship between the image size and the number of data pieces to be sent:</td>
</tr>
<tr>
<td></td>
<td>Section</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mura</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transmits the surface data. The table below shows the relationship between the image size and the number of data pieces to be sent:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Image size</td>
<td>No. of data pieces</td>
</tr>
<tr>
<td></td>
<td>980 × 980</td>
<td>196 × 196 after averaging (binning) of data within each area of 5 × 5 pixels</td>
</tr>
<tr>
<td></td>
<td>490 × 490</td>
<td>245 × 245 after averaging (binning) of data within each area of 2 × 2 pixels</td>
</tr>
<tr>
<td></td>
<td>196 × 196</td>
<td>196 × 196</td>
</tr>
<tr>
<td>Send: Statistics</td>
<td>Pseudocolor</td>
<td>Transmits the statistics of the entire surface data. The statistics are displayed on the lower right of each object.</td>
</tr>
</tbody>
</table>
Chapter 2: Operation Guide

Creating Reports
(Printing and Sending Data)

Example of Send: Area
The surface data is sent.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>190</th>
<th>191</th>
<th>192</th>
<th>193</th>
<th>194</th>
<th>195</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.04</td>
<td>37.96</td>
<td>39.05</td>
<td>39.58</td>
<td>38.3</td>
<td>37.46</td>
<td>37.77</td>
<td>35.79</td>
<td>36.07</td>
<td>38.65</td>
<td>34.64</td>
<td>38.58</td>
</tr>
<tr>
<td>38.25</td>
<td>37.91</td>
<td>38.73</td>
<td>39.63</td>
<td>38.66</td>
<td>37.59</td>
<td>37.49</td>
<td>37.45</td>
<td>34.8</td>
<td>39.05</td>
<td>35.16</td>
<td>37.2</td>
</tr>
<tr>
<td>38.56</td>
<td>37.88</td>
<td>38.13</td>
<td>39.41</td>
<td>38.91</td>
<td>37.68</td>
<td>35.71</td>
<td>38.76</td>
<td>34.56</td>
<td>38.13</td>
<td>36.53</td>
<td>35.51</td>
</tr>
<tr>
<td>38.75</td>
<td>37.9</td>
<td>37.73</td>
<td>38.71</td>
<td>39.35</td>
<td>37.84</td>
<td>34.53</td>
<td>38.95</td>
<td>35.51</td>
<td>36.85</td>
<td>38</td>
<td>34.55</td>
</tr>
<tr>
<td>39.01</td>
<td>38</td>
<td>37.3</td>
<td>38.31</td>
<td>39.05</td>
<td>38.09</td>
<td>34.59</td>
<td>37.74</td>
<td>36.98</td>
<td>35.3</td>
<td>39.1</td>
<td>34.63</td>
</tr>
<tr>
<td>39.23</td>
<td>38.28</td>
<td>37.25</td>
<td>37.78</td>
<td>38.93</td>
<td>38.61</td>
<td>35.49</td>
<td>36.31</td>
<td>38.44</td>
<td>34.63</td>
<td>38.88</td>
<td>35.95</td>
</tr>
</tbody>
</table>

Example of Send: Evaluation Area
The coordinates of the specified area and the data within the area are sent.

<table>
<thead>
<tr>
<th>191</th>
<th>192</th>
<th>193</th>
<th>194</th>
<th>195</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.28</td>
<td>42.92</td>
<td>42.01</td>
<td>41.68</td>
<td>42.49</td>
</tr>
<tr>
<td>42.23</td>
<td>42.88</td>
<td>42.64</td>
<td>41.93</td>
<td>42.07</td>
</tr>
<tr>
<td>42.11</td>
<td>42.17</td>
<td>42.74</td>
<td>42.45</td>
<td>42.02</td>
</tr>
<tr>
<td>42.2</td>
<td>41.64</td>
<td>42.16</td>
<td>42.41</td>
<td>42.12</td>
</tr>
<tr>
<td>42.32</td>
<td>41.44</td>
<td>41.31</td>
<td>42.12</td>
<td>42.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Send: Temp. Evaluation Area</th>
<th>Pseudocolor</th>
<th>Spot</th>
<th>Section</th>
<th>Mura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmits the surface data within the temporary evaluation area.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Send: Temp. Evaluation Area Statistics</th>
<th>Pseudocolor</th>
<th>Spot</th>
<th>Section</th>
<th>Mura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmits the statistics of the surface data within the temporary evaluation area. The statistics are displayed on the lower right of each object.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Send: Mark</th>
<th>Pseudocolor</th>
<th>Spot</th>
<th>Section</th>
<th>Mura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays when Mark has been set up. Transmits all coordinate values of the marked positions. For cross section diagram objects, the cross section line data will be sent.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Send: Point</th>
<th>Pseudocolor</th>
<th>Spot</th>
<th>Section</th>
<th>Mura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays only when the cursor is visible. The value at the point specified by the cursor will be sent.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Send: Spot</th>
<th>Pseudocolor</th>
<th>Spot</th>
<th>Section</th>
<th>Mura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmits the Spot data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example of Send: Area
The surface data is sent.

<table>
<thead>
<tr>
<th>392</th>
<th>393</th>
<th>394</th>
<th>395</th>
<th>591</th>
<th>592</th>
<th>593</th>
<th>594</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.91</td>
<td>7.2</td>
<td>7.56</td>
<td>7.96</td>
<td>4.4</td>
<td>4.64</td>
<td>4.9</td>
<td>5.35</td>
</tr>
<tr>
<td>7.08</td>
<td>7.29</td>
<td>7.53</td>
<td>7.91</td>
<td>4.44</td>
<td>4.56</td>
<td>4.78</td>
<td>5.18</td>
</tr>
<tr>
<td>7.15</td>
<td>7.32</td>
<td>7.55</td>
<td>7.92</td>
<td>4.85</td>
<td>4.71</td>
<td>4.75</td>
<td>5.09</td>
</tr>
<tr>
<td>7.13</td>
<td>7.32</td>
<td>7.68</td>
<td>8.07</td>
<td>5.34</td>
<td>4.93</td>
<td>4.81</td>
<td>4.89</td>
</tr>
</tbody>
</table>

Example of Send: Evaluation Area
The coordinates of the specified area and the data within the area are sent.

<table>
<thead>
<tr>
<th>163</th>
<th>164</th>
<th>165</th>
<th>166</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>4.32</td>
<td>4.3</td>
<td>4.21</td>
</tr>
<tr>
<td>4.4</td>
<td>4.32</td>
<td>4.35</td>
<td>4.21</td>
</tr>
<tr>
<td>4.47</td>
<td>4.39</td>
<td>4.33</td>
<td>4.21</td>
</tr>
<tr>
<td>4.45</td>
<td>4.41</td>
<td>4.27</td>
<td>4.2</td>
</tr>
</tbody>
</table>
CHAPTER 2 : Operation Guide

• Example of Send: Statistics
Transmits the range specified to obtain statistics and the resulting statistic values.

Area
0 0 979 979
Max. 45.37
Min. 3.19
Avg. 23.36
S.D. 10.61

• Example of Send: Mark
Transmits the colorimetric data followed by the coordinates.

Example of a section object when its center is 200,150 (X,Y) and the resolution is 980*980.

• Example of Send: Multi-Spot

<table>
<thead>
<tr>
<th>No</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Dominant wavelength</th>
<th>Excitation purity</th>
<th>Lv(Contrast)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33.35</td>
<td>29.94</td>
<td>31.83</td>
<td>~</td>
<td>506.7</td>
<td>10.48</td>
</tr>
<tr>
<td>2</td>
<td>22.78</td>
<td>20.02</td>
<td>14.22</td>
<td>~</td>
<td>593.8</td>
<td>25.21</td>
</tr>
<tr>
<td>3</td>
<td>22.66</td>
<td>18.95</td>
<td>12.03</td>
<td>~</td>
<td>595.5</td>
<td>32.78</td>
</tr>
<tr>
<td>23</td>
<td>32.46</td>
<td>29.87</td>
<td>25.83</td>
<td>~</td>
<td>598.8</td>
<td>12.11</td>
</tr>
<tr>
<td>24</td>
<td>19.2</td>
<td>17.13</td>
<td>13.67</td>
<td>~</td>
<td>597.6</td>
<td>18</td>
</tr>
<tr>
<td>25</td>
<td>39.38</td>
<td>37.07</td>
<td>36.46</td>
<td>~</td>
<td>496</td>
<td>4.79</td>
</tr>
<tr>
<td>Max.</td>
<td>43.62</td>
<td>40.55</td>
<td>43.82</td>
<td>~</td>
<td>618.2</td>
<td>62.98</td>
</tr>
<tr>
<td>Min.</td>
<td>12.87</td>
<td>10.95</td>
<td>4.422</td>
<td>~</td>
<td>495.7</td>
<td>4.22</td>
</tr>
<tr>
<td>Avg.</td>
<td>28.8</td>
<td>25.65</td>
<td>22.59</td>
<td>~</td>
<td>561</td>
<td>22.2</td>
</tr>
<tr>
<td>S.D.</td>
<td>9.73</td>
<td>10.2</td>
<td>13.78</td>
<td>~</td>
<td>45.29</td>
<td>16.54</td>
</tr>
</tbody>
</table>

non-uniformity

<table>
<thead>
<tr>
<th>No</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Dominant wavelength</th>
<th>Excitation purity</th>
<th>Lv(Contrast)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33.35</td>
<td>29.94</td>
<td>31.83</td>
<td>~</td>
<td>506.7</td>
<td>10.48</td>
</tr>
<tr>
<td>2</td>
<td>22.78</td>
<td>20.02</td>
<td>14.22</td>
<td>~</td>
<td>593.8</td>
<td>25.21</td>
</tr>
<tr>
<td>3</td>
<td>22.66</td>
<td>18.95</td>
<td>12.03</td>
<td>~</td>
<td>595.5</td>
<td>32.78</td>
</tr>
<tr>
<td>23</td>
<td>32.46</td>
<td>29.87</td>
<td>25.83</td>
<td>~</td>
<td>598.8</td>
<td>12.11</td>
</tr>
<tr>
<td>24</td>
<td>19.2</td>
<td>17.13</td>
<td>13.67</td>
<td>~</td>
<td>597.6</td>
<td>18</td>
</tr>
<tr>
<td>25</td>
<td>39.38</td>
<td>37.07</td>
<td>36.46</td>
<td>~</td>
<td>496</td>
<td>4.79</td>
</tr>
<tr>
<td>Max.</td>
<td>43.62</td>
<td>40.55</td>
<td>43.82</td>
<td>~</td>
<td>618.2</td>
<td>62.98</td>
</tr>
<tr>
<td>Min.</td>
<td>12.87</td>
<td>10.95</td>
<td>4.422</td>
<td>~</td>
<td>495.7</td>
<td>4.22</td>
</tr>
<tr>
<td>Avg.</td>
<td>28.8</td>
<td>25.65</td>
<td>22.59</td>
<td>~</td>
<td>561</td>
<td>22.2</td>
</tr>
<tr>
<td>S.D.</td>
<td>9.73</td>
<td>10.2</td>
<td>13.78</td>
<td>~</td>
<td>45.29</td>
<td>16.54</td>
</tr>
</tbody>
</table>

* The measurement conditions are sent using the following format:
 DATA006 2005/9/17 10:45
 Lens type : Standard
 Lens position : 0.25 m
 Exposure : 1/32-normal-100%
 Number of additions : 64
 Level for lower limit : 5.00
 Resolution : 980*980
 User calibration : Not used
 Exposure area : 980*980
 Evaluation area : 980*980
2.4.4 Saving Data in a Text Format

The colorimetric data displayed on the pseudocolor graph can be saved in a text format. To save data in a text format, place the mouse cursor on the pseudocolor graph or specify the area using the mouse. Then, right-click the mouse on the pseudocolor graph to display a pop-up menu which lists the items that can be saved in a text format. Select the item you want to save and execute the save command.

Note

When you open data saved in a text format (*.txt, *.csv) with Notepad, the text may not be displayed properly. When this occurs, select File - Open from the Notepad menu bar, specify ANSI Encoding in the Open dialog box, and then open the file.

Procedure

1. Select Edit from the menu and make sure ‘Edit Mode’ has no check mark next to it.

2. Click on the graph to save in a text format and highlight it.

3. Right-click on a graph and select one of the ‘Save text’ menu items from the pop-up menu that appears.
 The Save As dialog box appears.

4. Specify a file name and save the data.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Displayed Object</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saving data in text format: Area</td>
<td>Pseudocolor Spot Section Mura</td>
<td>Saves the surface data. The number of data pieces to be saved is determined to cover all pixels of the current image size.</td>
</tr>
<tr>
<td>Saving data in text format: Statistics</td>
<td>Pseudocolor Spot Section Mura</td>
<td>Saves the statistics of the entire surface data. The statistics are displayed on the lower right of each object.</td>
</tr>
<tr>
<td>Saving data in text format: Evaluation Area</td>
<td>Pseudocolor Spot Section Mura</td>
<td>Saves the surface data within the evaluation area shown with a yellow frame.</td>
</tr>
<tr>
<td>Saving data in text format: Evaluation Area Statistics</td>
<td>Pseudocolor Spot Section Mura</td>
<td>Saves the statistics of the surface data within the evaluation area shown with a yellow frame. The statistics are displayed on the lower right of each object.</td>
</tr>
</tbody>
</table>
CHAPTER 2 : Operation Guide

Creating Reports
(Printing and Sending Data)

- Example of Saving data in text format: Forward: Area
 The surface data is saved in text format.

<table>
<thead>
<tr>
<th>Data</th>
<th>Pseudocolor</th>
<th>Spot</th>
<th>Section</th>
<th>Mura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displayed when a temporary evaluation area has been set up. Saves the surface data within the temporary evaluation area.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Example of Saving data in text format: Temp. Evaluation Area Statistics
 The statistics of the surface data within the temporary evaluation area are saved. The statistics are displayed on the lower right of each object.

- Example of Saving data in text format: Point
 The coordinates of the specified area and the data within the specified area are saved in text format.

| Displayed when a cursor is displayed. Saves the data at the point specified with the cursor. |
| Pseudocolor | Spot | Section | Mura |

- Example of Saving data in text format: Mark
 The range of the statistics and the statistic values are saved in text format.

| Displayed when marks have been set. Saves all coordinate values at the positions of the marks. For cross section diagram objects, the cross section line data will be saved. |
| Pseudocolor | Spot | Section | Mura |

- Example of Saving data in text format: Spot
 Saves the spot data.

| Saved the data at the point specified with the cursor. |

Table: Menu Displayed Object Data

<table>
<thead>
<tr>
<th>Saving data in text format: Temp. Evaluation Area</th>
<th>Pseudocolor</th>
<th>Spot</th>
<th>Section</th>
<th>Mura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displayed when a temporary evaluation area has been set up. Saves the surface data within the temporary evaluation area.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Saving data in text format: Temp. Evaluation Area Statistics</th>
<th>Pseudocolor</th>
<th>Spot</th>
<th>Section</th>
<th>Mura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displayed when a temporary evaluation area has been set up. Saves the statistics of the surface data within the temporary evaluation area. The statistics are displayed on the lower right of each object.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Saving data in text format: Point</th>
<th>Pseudocolor</th>
<th>Spot</th>
<th>Section</th>
<th>Mura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displayed when a cursor is displayed. Saves the data at the point specified with the cursor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Saving data in text format: Mark</th>
<th>Pseudocolor</th>
<th>Spot</th>
<th>Section</th>
<th>Mura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displayed when marks have been set. Saves all coordinate values at the positions of the marks. For cross section diagram objects, the cross section line data will be saved.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Saving data in text format: Spot</th>
<th>Pseudocolor</th>
<th>Spot</th>
<th>Section</th>
<th>Mura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saves the spot data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example of Saving data in text format: Forward: Area

The surface data is saved in text format.

| Saved the data at the point specified with the cursor. |

- Example of Saving data in text format: Forward: Evaluation Area
 The coordinates of the specified area and the data within the area are saved in text format.

| Saved the data at the point specified with the cursor. |

- Example of Saving data in text format: Forward: Statistics
 The range of the statistics and the statistic values are saved in text format.

| Saved the data at the point specified with the cursor. |
CHAPTER 2 : OPERATION GUIDE

• Example of Saving data in text format: Forward: Mark
The coordinates followed by the colorimetric data are saved in text format.

904 144 38.19
798 166 38.52
252 189 20.07
569 303 24.05
627 465 20.97
 : : :
121 27 13.87
126 144 20.87
111 258 17.46
736 465 12.46
832 465 39.16

Example of a section object when its center is 200,150 (X,Y) and the resolution is 980*980.
200 150
0 50.23 51.33
1 51.22 53.11
2 54.84 54.21
3 54.32 54.87
4 53.52 53.70
 : : :
976 53.22 51.56
977 52.76 52.69
978 51.23 51.97
979 53.12 53.21

• Example of Saving data in text format: Multi-Spot

<table>
<thead>
<tr>
<th>No</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Dominant wavelength</th>
<th>Excitation purity</th>
<th>Lv(Contrast)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33.35</td>
<td>29.94</td>
<td>31.83</td>
<td>~</td>
<td>506.7</td>
<td>10.48</td>
</tr>
<tr>
<td>2</td>
<td>22.78</td>
<td>20.02</td>
<td>14.22</td>
<td>~</td>
<td>593.8</td>
<td>25.21</td>
</tr>
<tr>
<td>3</td>
<td>22.66</td>
<td>18.95</td>
<td>12.03</td>
<td>~</td>
<td>595.5</td>
<td>32.78</td>
</tr>
<tr>
<td>23</td>
<td>32.46</td>
<td>29.87</td>
<td>25.83</td>
<td>~</td>
<td>598.8</td>
<td>12.11</td>
</tr>
<tr>
<td>24</td>
<td>19.2</td>
<td>17.13</td>
<td>13.67</td>
<td>~</td>
<td>597.6</td>
<td>18</td>
</tr>
<tr>
<td>25</td>
<td>39.38</td>
<td>37.07</td>
<td>36.46</td>
<td>~</td>
<td>496</td>
<td>4.79</td>
</tr>
<tr>
<td>Max.</td>
<td>43.62</td>
<td>40.55</td>
<td>43.82</td>
<td>~</td>
<td>618.2</td>
<td>62.98</td>
</tr>
<tr>
<td>Min.</td>
<td>12.87</td>
<td>10.95</td>
<td>4.422</td>
<td>~</td>
<td>495.7</td>
<td>4.22</td>
</tr>
<tr>
<td>Avg.</td>
<td>28.8</td>
<td>25.65</td>
<td>22.59</td>
<td>~</td>
<td>561</td>
<td>22.2</td>
</tr>
<tr>
<td>S.D.</td>
<td>9.73</td>
<td>10.2</td>
<td>13.78</td>
<td>~</td>
<td>45.29</td>
<td>16.54</td>
</tr>
<tr>
<td>non-uni</td>
<td>70.48</td>
<td>72.99</td>
<td>89.91</td>
<td>~</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>non-uniformity</td>
<td>70.48</td>
<td>72.99</td>
<td>89.91</td>
<td>~</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

* The measurement conditions are saved in the following format:
DATA006 2005/9/17 10:45
Lens type : Standard
Lens position : 0.25 m
Exposure : 1/32-normal-100%
Number of additions : 64
Level for lower limit : 5.00
Resolution : 980*980
User calibration : Not used
Exposure area : 980*980
Evaluation area : 980*980
CHAPTER 2 : OPERATION GUIDE

2.5 File Management

2.5.1 File Types

This software supports the following folder/file formats:

- Document folders
 - Folders containing document files/template files
- Document files (*.mcl)
- Template files (*.mct)
- User calibration (positional) coefficient file (*.uca)
- User calibration (color region) coefficient file (*.cuc)
- Multi screen file (*.mcb)
- Spot setting file (*.spt)
- Measurement condition file (*.cas)
- CA-S15w file (*.lst) (Ver. 2.12 or later)

In a document folder, internal files (*.mcp, *.dat) are also generated.

[Note]
The document folder and document file (*.mcl) are saved as a pair with the same name. Do not change the name. If you change the name, file saving will not be performed correctly. To save the file such as when making a backup, be sure to save the entire folder.

2.5.2 Saving and Loading Documents

Saving Documents

1. Select File - Save or File - Save As from the menu.

When you select File - Save As, or when you select File - Save for a document which has not yet been saved, you need to select the folder where the file is to be saved in the Save As dialog box. The default folder is “C:\Documents and Settings\user\My Documents”.

To change the default folder, select Tool - File Path from the menu. Select ‘CAS20W Files (*.mcl)’ as the file type.

[Tip]
A folder with the same name as the file name you specified in the Save As dialog box is created under the selected folder. The document file is saved in the folder.

The following example shows the case where “CA-S20w1.mcl” is specified as the file name.

C: Documents and Settings
 user
 My Document
 CA-S20w1
 Newly created folder
 CA-S20w1.mcl
 Newly saved file

Files will be saved in a different format from previous versions (versions older than ver.2.0).
Files saved in ver.2.0 cannot be opened in older versions (versions older than ver.2.0) of CA-S20w. To open a document that was saved in an older version in CA-S20w ver.2.0 or later and retain the original file format, do not select File - Save As.
CHAPTER 2 : Operation Guide

Calling Documents

1. Select File - Open from the menu.
 In the File dialog box, specify the desired file.
 Select ‘CAS20W Files (*.mcl)’ as the file type.

 - You can open up to 5 documents at once.
 - Do not directly open a document by double-clicking the document folder icon. CA-S20w will not start normally.

Saving Document Formats Only

Save the page settings, graph layouts, and graph settings without measurement data.

1. Select File - Template - Save from the menu.
 In the File dialog box, select the folder to save the format in.
 Select ‘Template (*.mct)’ as the file type.

Applying Formats to Current Document

Apply a set of saved page settings, graph layouts and graph settings to the current document.

1. Select File - Template - Load from the menu.
 Select ‘Template (*.mct)’ as the file type.
 In the File dialog box, click the file to open.
 The page settings, graph layouts and graph settings are updated.

 When the software fails to read the selected template file, it reads “Default.mct”, a template file loaded when the CA-S20w starts, as an alternative. When this happens, save the data and restart the CA-S20w. For details about “Default.mct”, refer to page 89.

Transferring Saved Measurement Data Files to Other Disk

1. Copy each folder containing saved measurement data files.

 After deleting the files in a folder, you will no longer be able to open them.

 Store the document folder and document file (*.mcl) with the same name. Do not change these names.

Deleting Saved Measurement Data Files

1. Delete each folder containing saved measurement data files.
File Management

Note

After deleting the files in a folder, you will no longer be able to open them.
CHAPTER 2 : Operation Guide

Deleting Document Measurement Data

1. From the Sample list, select measurement data to delete.

2. Right-click on the list and select ‘Delete’ from the pop-up menu that appears.
 When the “OK to delete?” dialog box appears, click the OK button.

2.5.3 Uploading the Measurement Data from the CA-1500

1. Select File - Import from the menu bar.
 Specify ‘CA-S20w Files (*.lst)’ for ‘File of type’ in the File dialog box.
 Note that only the measurement data is uploaded. Measurement conditions or other data cannot be uploaded.
2.5.4 Creating a New Document

You can create new document files (data files *.mcl) to store measurement data.

1. Select File - New from the menu.
 A new document opens.

2.5.5 Template File Loaded when CA-S20w Starts

When the application starts, it automatically calls the template file “Default.mct”, which is saved in the installation folder.

The “Default.mct” file to be installed is contained in the “JP” folder on the application CD.

The template that is automatically uploaded at startup can be replaced by a template customized by the user. This user customized template will automatically upload at the next startup.

1. Select File Path - Tool from the menu bar.
 The File Path dialog box is displayed.

2. Click the ‘Browse’ button for ‘Template’.
 The Open dialog box is displayed.

3. Select the template file you wish to use, and click the ‘Open’ button.
 The name of the selected file is displayed at ‘Default template Folder’ with its full path.

4. Click the OK button.
2.6 Customization

2.6.1 Overview
Various graph displays and data, which are convenient for data analysis, can be freely laid out and saved as templates. Several types of basic templates are prepared and can be used to customize the screen. To customize the screen, CA-S20w must be in edit mode.

2.6.2 Edit Mode
Checking this menu item lets you add/delete pages and edit items in pages (move, resize, add or delete graphs).

1. Select Edit - Edit Mode from the menu and make sure ‘Edit Mode’ has a check mark next to it.

2. To release the edit mode, select Edit - Edit Mode from the menu again and uncheck ‘Edit Mode’.

Note
In some rare cases, you can move a display object in a mode other than the edit mode. If this happens, select the edit mode once and place the display object back into the original position, and then exit the edit mode.
2.6.3 Graph Toolbar

This bar appears in the window when the CA-S20w software is in edit mode.

<table>
<thead>
<tr>
<th>No.</th>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Selection tool</td>
<td>Used to select an object.</td>
</tr>
<tr>
<td>2</td>
<td>Line object</td>
<td>Displays lines (page 96).</td>
</tr>
<tr>
<td>3</td>
<td>Circle object</td>
<td>Displays circles or ovals of a desired size (page 97).</td>
</tr>
<tr>
<td>4</td>
<td>Rectangle object</td>
<td>Displays squares or rectangles of a desired size (page 97).</td>
</tr>
<tr>
<td>5</td>
<td>String Label object</td>
<td>Displays text (page 98).</td>
</tr>
<tr>
<td>6</td>
<td>Pseudocolor object</td>
<td>Displays images according to the colorimetric data and pseudocolor settings specified in the object property (pages 100-106).</td>
</tr>
<tr>
<td>7</td>
<td>Pseudocolor with Spot object</td>
<td>Pseudocolor display with spot calculation function. Displays spot frames and spot results in a pseudocolor graph, and spot calculation results (average value, standard deviation, etc.) in the lower part (pages 107-110).</td>
</tr>
<tr>
<td>8</td>
<td>3D object</td>
<td>Displays 3D images according to the colorimetric data and pseudocolor settings specified in the object property (page 111).</td>
</tr>
<tr>
<td>9</td>
<td>Cross section diagram object</td>
<td>Displays the cross section diagram of desired coordinates together with pseudocolor (page 112).</td>
</tr>
<tr>
<td>10</td>
<td>xy-chromaticity diagram object</td>
<td>Displays the xy or u’v’ chromaticity diagram. Displays the whole distribution, average line, etc. in a chromaticity diagram (page 115).</td>
</tr>
<tr>
<td>11</td>
<td>Mura control object</td>
<td>Highlights partial unevenness in luminance or chromaticity such as points or streaks (pages 118-119).</td>
</tr>
<tr>
<td>12</td>
<td>RGB object</td>
<td>Displays measurement data as an RGB image (page 120).</td>
</tr>
<tr>
<td>13</td>
<td>Histogram object</td>
<td>Displays the histogram of measurement data (page 121).</td>
</tr>
</tbody>
</table>
2.6.4 Add/Delete/Rename Page

You can add/delete/rename tab pages in the document window.

Add page

1. Move the mouse cursor onto a page selection tab in the document window, right-click on the tab, and select ‘Add page’ from the pop-up menu that appears.

 The Input page name dialog box appears.
 If you select Edit - Add page from the menu, a page is created next to the currently displayed document window.

 \[\text{Note}\]
 \[\text{One document consists of 20 pages at maximum.}\]

 ![Add page dialog box]

 ![Input page name dialog box]

2. Input a page name and click the OK button.

 A new page is added to the right of the page selection tab selected in 1.

Delete page

1. Move the mouse cursor onto a page selection tab to delete in the document window, right-click on the tab, and select ‘Delete page’ from the pop-up menu that appears.

 If the page has objects, you will see a confirming message that the page will be deleted.
 If you select Edit - Delete page from the menu, a tab page is deleted in the currently displayed document window.

Rename page

1. Move the mouse cursor onto a page selection tab to rename in the document window, right-click on the tab, and select ‘Rename page’ from the pop-up menu that appears.

 The Input page name dialog box appears. Enter a page name to change to and click the OK button.
 The page is renamed.
2.6.5 Editing Display Object

You can place new display objects using the graph toolbar displayed in edit mode. This section describes pasting and settings of pseudocolor objects as an example. Use the same procedure for other display objects. For the property of each display object, see “2.7 Display Object Properties” on pages 96-121.

Placing display objects

1. Put CA-S20w into edit mode and add a new page. See page 92 to add a new page.

2. Select the icon from the graph toolbar and drag the pseudocolor object to the desired position. A pseudocolor object is placed. You can change an object to a desired size by dragging with the mouse, even after placing the object. You can also copy/delete/move it.

3. Select the placed object, right-click on the tab, and select ‘Property’ from the pop-up menu that appears. The PseudoColor Graph Property dialog box appears.

4. Make property settings and click the OK button.
CHAPTER 2 : OPERATION GUIDE

Placement range of display objects

Display objects outside of the printing range frame will not be printed.

Selecting display objects

Click in the ruled line frame of a display object that has been pasted to a document window to select the display object. You can select multiple objects by clicking on a frame while pressing the Shift key. When multiple document files are opened, you cannot select multiple drawing objects from different document files.

Releasing the selected state of display objects

Click in a view screen other than the screen where display objects are pasted.

Resizing display objects

Click in a display object to select it and move the mouse cursor to a ruled line frame handle. When the shape of the icon changes, drag the handle.
CHAPTER 2 : OPERATION GUIDE

Moving display objects
Click in a display object to select it and move the mouse cursor into a ruled line frame. Drag the drawing object.

Copying display objects
Click in a display object to select it, right-click on the object and select ‘Copy’ from the pop-up menu that appears. This function can be used by selecting Edit - Copy from the menu or by pressing the C key while pressing the Ctrl key.

Cutting display objects
Click in a display object to select it, right-click on the object and select ‘Cut’ from the pop-up menu that appears. This function can be used by selecting Edit - Cut from the menu or by pressing the X key while pressing the Ctrl key.

Pasting display objects
Select Edit - Paste from the menu, or by press the V key while pressing the Ctrl key. When multiple document files are opened, you can paste the copy to the document window of other document files than the copy-from file.

Tip
If you copy or cut a display object showing data and then paste it, the data is also pasted. Note, however, that the cursor position subject to temporary evaluation and the temporary evaluation area are not pasted.

Deleting display objects
Click in a display object to select it and select Edit - Delete from the menu, or press the Delete key. When multiple objects are selected, all the selected objects will be deleted.
2.7 Display Object Properties

2.7.1 Line Object

Displays lines.
Double-click on a display object and the following property dialog box appears.

Line

![Line properties dialog box]

Type
Set the line type. Select Solid Line, Dashed Line or Dotted Line.

Width
Set the width of the line. Select from the 5 choices between 1 and 5. The width can be changed for Solid Line only. For Dashed Line and Dotted Line, the width is 1.

Color
Set the color of the line.
2.7.2 Rectangle Object/ Circle Object

Displays squares or rectangles/circles or ovals.
Double-click on a display object and the following property dialog box appears.

Circle, Rectangle

![Circle/Rectangle Tool Property](image)

Frame
Specify whether to show or hide the frame.

Frame Line
Set the line type of the frame. Select Solid Line, Dashed Line or Dotted Line.

Width
Set the width of the frame line. Select from the 5 stages between 1 and 5. The width can be changed for Solid Line only. For Dashed Line and Dotted Line, the width is 1.

Frame Color
Set the color of the frame.

Pattern
Select ON or OFF.

Color
Click the button to set the color as with the frame color.
2.7.3 Label Object

Displays text.
Double-click on a display object and the following property dialog box appears.

Label

![Label Property Dialog Box]

- **Caption** Input text.
- **Font**
 - **Font** Set the character font.
 - **Size** Set the character size.
- **Color** Set the color of the text.
Circle, Rectangle

Frame
Specify whether to show or hide the frame.

Frame Line
Set the line type of the frame. Select Solid Line, Dashed Line or Dotted Line.

Width
Set the width of the frame line. Select from the 5 stages between 1 and 5. The width can be changed for Solid Line only. For Dashed Line and Dotted Line, the width is 1.

Frame Color
Set the color of the frame.

Pattern
Select ON or OFF.

Color
Click the button to set the color as with the frame color.
2.7.4 Pseudocolor Object

This display object forms the nucleus of CA-S20w. Displays measurement data in the CA-2500/CA-2000 series according to the specified colorimeter values and pseudocolor settings. Right-click on a display object and select ‘Property’, and the following property dialog box appears.

Setting Image

Used to set the pseudocolor graph’s display range.

Tip
This option is displayed on the Properties of each object of Pseudocolor, Spot, 3D, Section, and Mura.

![Pseudocolor Property Dialog Box]

When ‘Auto’ is checked, the measurement data’s maximum and minimum values are used.

Tone Setting
Sets the method of setting the gradation of the pseudo color and the number of steps of the gradation.

Fixed tone
Select from the eight fixed types of gradation.

Percent setting
Set the gradation as a percentage. With the selected target position (maximum or minimum value) as reference, the gradation divided by the entered percent value is set. For example, if the value 5% is entered, 20 steps of gradation are set.

Scale
Max
Min
Value range: smaller than the maximum value

Interval
Displays the interval of the gradation.

Auto
Specify whether or not to enable automatic settings.

Decimal places
Sets the number of “decimal places” for values displayed on axes with scales. (Select 0, 1, 2, 3, or 4).
View type
Select from Pseudo or Contour lines.

Color pattern
Select the color spectrum for the pseudocolor graph from 3 patterns.
Depending on the selection, the colors of Over Range, Under Range, and Calculate Error are different.

Over Range
Sets the color specified for instances when the measured image is too bright for color representation.

Under Range
Sets the color specified for instances when the measured image is too dark for color representation.

Calculate Error
Sets the color specified for instances when the colors cannot be calculated for the measured image.
These colors differ depending on the selection of ‘Type 1’, ‘Type 2’, or ‘B/W’. You cannot specify them freely.

View
Used to set up the items to be displayed on the Pseudocolor graph.

Tip
This option is displayed on the Properties of each object of Pseudocolor, Spot, Section, and Mura.

Image
Show Image
When this option is checked, images are displayed and the following three options become enabled.

Show Grid on Pseudo Color Image
When this checkbox is checked, grid lines are displayed on the pseudocolor graph.

Show Scale
When this checkbox is checked, scales are displayed at the top and on the left of the pseudocolor graph.
Show Only Evaluation Area
Check this checkbox to display only the area specified with the Evaluation area frame onto the Pseudocolor graph.

Values, Strings

Show Data Name
When this option is checked, the name of the data is displayed.

Show Data at Cursor Position
When this option is checked, the colorimetric value at the cursor position is displayed along with the position of the cursor.

Show Statistics
When this option is checked, statistics are displayed and the following three options become enabled.

Show Statistics for Entire Area
When this option is checked, the statistics of the entire screen are displayed.

Show Statistics for Evaluation Area
When this option is checked, the statistics of the evaluation area are displayed.

Show Statistics for Temp. Evaluation Area
When this option is checked, the statistics of the temporary evaluation area are displayed.
Font

Set the font, size, and color of text used in objects.

Tip
This option is displayed on the Properties of each object of Pseudocolor, Spot, 3D, Section, Mura, and Histogram.

Font

Font
Set the font of text used in graphs.

Size
Set the size of text used in graphs.

Color
Set the color of text used in graphs.
Mark

Place the mouse cursor on the pseudocolor graph and click the mouse while holding down the Shift key. A ‘mark’ is displayed on that point. You can set the position and color of the mark.

Tip
• This option is displayed on the Properties of each object of Pseudocolor, Spot, Section, X-Y Chromaticity Diagram, Mura, and RGB.
• Up to 20 ‘Marks’ can be displayed.
• You can change the position and color of each mark by clicking on a list frame of ‘x’/’y’/‘Color’.

No.
Mark number in the graph.

x
The x coordinate of the mark shown in the graph. By clicking on a list frame twice (not double-clicking), you can enter a numerical value.

y
The y coordinate of the mark shown in the graph. By clicking on a list frame twice (not double-clicking), you can enter a numerical value.

Color
Color of a mark in the graph. The ‘Color’ button is enabled when one row is selected from the list. Click the ‘Color’ button to display the Color dialog box and specify the color.

DELETE
Deletes the selected mark. The numbers are automatically changed.

Remove All
Deletes all the marks.
CHAPTER 2 : OPERATION GUIDE

Color

Set graph area colors.

Tip
This option is displayed on the Properties of each object of Pseudocolor, Spot, 3D, Section, X-Y Chromaticity Diagram, Mura, and Histogram.

![Pseudo Color Property](image)

Background Color
Set the color of the background.

Cursor Color
Set the color of the cursor.

Tip
This option is not displayed on the Properties of each object of 3D and Histogram.

Graph Area
Used to set the color of the graph area.

Tip
This option is not displayed on the Properties of each object of Pseudocolor, Spot, 3D, and Mura.
CHAPTER 2 : Operation Guide

Send

Used to configure the setting to output data to the clipboard.

Tip

This option is displayed on the Properties of each object of Pseudocolor, Spot, Section, and Mura.

Option

Add Measure Condition
Check this checkbox to output the measurement condition displayed on the Condition frame in text format.

Decimal digit
Specify the number of decimal digits of the output data. (Select from 0, 1, 2, 3, and 4.)

Error pixel

Over pixel
Enter a character string or a numerical value to be assigned to the Over pixels. The default string is “Over”.

Under pixel
Enter a character string or a numerical value to be assigned to the Under pixels. The default string is “Under”.

Calculation error pixel
Enter a character string or a numerical value to be assigned to the calculation error pixels. The default string is “Error”.
2.7.5 Pseudocolor with Spot Object

Right-click on a display object and select ‘Property’, and the following property dialog box appears.

Setting Image

Used to set the pseudocolor graph’s display range. Not displayed when the viewfinder image is displayed with RGB images instead of pseudocolor (When ‘View RGB’ is checked in the right-click menu).

The options are the same as those on the Properties of the Pseudocolor graph object. See page 100.

View

Used to set up the items to be displayed on the Pseudocolor graph area.

The options are the same as those on the Properties of the Pseudocolor graph object. See page 101.

Setting RGB View

Used when color adjustment is necessary for the RGB images shown on the monitor. This option is displayed only when the viewfinder image is displayed with RGB images instead of pseudocolor (When ‘View RGB’ is checked in the right-click menu).

Adjust

Move the slide bar to the right or left and adjust the color. A reference value is displayed in the box.

Note

Depending on the resolution of your PC, you may not be able to reset the value to the initial value (0) with the slide bar. In such a case, enter “0” directly in the box next to the slide bar.
CHAPTER 2 : Operation Guide

Font

Set the font, size, and color of text used in objects. Not displayed when the viewfinder image is displayed with RGB images instead of pseudocolor (When ‘View RGB’ is checked in the right-click menu). The options are the same as those on the Properties of the Pseudocolor graph object. See page 103.

Spot Options

Set the line type, line color, and color deviation lines for spot areas.

Spot Options

Spot Color
Specify the color of a normal spot.

User Calibration Spot
You can specify your own original color for the spots to which the user calibration has been applied.

Judgement Error Spot
You can specify your own original color for the spots that failed the tolerance judgement.

Ignore Pixels
You can specify a color for the pixels that are judged as errors when the ignore pixel has been set. Checking ‘Show Pixels’ enables this option.

Line Width
Select the thickness of the spot line.

Number
Specify the notation of the spot measurement frame number.

Show Comment
When this option is checked, the comment specified for spot measurement data is displayed after the number.

Font
Specify the font used for the number and comment.
Show Cross Line
When this option is checked, a cross is displayed to indicate the center of the spot measurement frame.

Size
Select the size of the cross.

Color
Specify the color of the cross.

Display Type
Graph + List
The data is displayed in graph and list forms.

List Only
The data is displayed in list form only.

Graph Only
The data is displayed in graph form only.

Color Difference Line
Show Color Difference Line
When this option is checked, color deviation lines are displayed instead of spots. The following options become enabled.

Target
Color Value
Set the color space used as the criteria for color deviation (selectable from Lvxy or Lv'u'v').
• When ‘Target image center’ is selected, the median of the color space is used as the reference value.
• When ‘Target input value’ is selected, the value entered in the text box below is used as the reference value

Difference Line
Line type
Select the type of the line.

Line Color
Set the color of the line.
• When ‘Fixed Color’ is selected, the line is displayed in the color selected in the box on the right.
• When ‘Color Space’ is selected, the line is displayed in the same color as the space in the chromaticity diagram.

Line Length (Relative to Image View)
Enter the size of the color deviation line by assuming that the size of the image being displayed is 100.

Difference Circle
Show Difference Circle
When this option is checked, the color difference judgment for tolerance is emphasized with a circle.
Chapter 2: Operation Guide

Mark

Clicking the mouse button on the Pseudocolor graph will display a ‘mark’ on that point. This option is used to set the position and color of the ‘mark’.
The options are the same as those on the Properties of the Pseudocolor graph object. See page 104.

Color

Set graph area colors.
The options are the same as those on the Properties of the Pseudocolor graph object. See page 105.

Send

Used to configure the setting to output data to the clipboard.
The options are the same as those on the Properties of the Pseudocolor graph object. See page 106.
2.7.6 3D Object

Right-click on a display object and select ‘Property’, and the following property dialog appears.

Setting Image

Used to set the pseudocolor graph’s display range.
The options are the same as those on the Properties of the Pseudocolor graph object. See page 100.

3D

Used to set angles in a 3D graph. You can enter a value within the range of −180 degree to 180 degree.

Angle
Enter a value within the range of −180 degree to 180 degree.

Rotation
Enter a value within the range of −180 degree to 180 degree.

Font

Set the font, size, and color of text used in graphs.
The options are the same as those on the Properties of the Pseudocolor graph object. See page 103.

Color

Set graph area colors.
The options are the same as those on the Properties of the Pseudocolor graph object. See page 105.
2.7.7 Cross Section Diagram Object

Right-click on a display object and select ‘Property’, and the following property dialog box appears.

Setting Image

Used to set up the display area on the Pseudocolor graph area. The options are the same as those on the Properties of the Pseudocolor graph object. Refer to page 100.

View

Used to set up the items to be displayed on the Pseudocolor graph area.

![Cross Section Diagram Object Property Dialog](image)

Image

- **Display Grid on Pseudocolor Image**
 Check this checkbox to display grid lines on the Pseudocolor graph.

- **Show Scale**
 Check this checkbox to display scales on the top and left sides of the Pseudocolor graph.

- **Display Only Evaluation Area**
 Check this checkbox to display only the area specified with the Evaluation area frame onto the Pseudocolor graph.

Diagram

- **Display Grid**
 When this option is checked, the grids located at the same position as the pseudocolor are displayed.

Font

Set the font, size, and color of text used in graphs. The options are the same as those on the Properties of the Pseudocolor graph object. See page 103.
CHAPTER 2 : OPERATION GUIDE

Mark

Clicking the mouse button on the Pseudocolor graph will display a ‘mark’ on that point. This option is used to set the position and color of the ‘mark’. The options are the same as those on the Properties of the Pseudocolor graph object. See page 104.

Line

When you place the mouse cursor on the pseudocolor graph and left-click the mouse button while holding down the Ctrl key at two points, an ‘arbitrary line’ that passes through the two points are displayed. Set the positions of the two points and the color of the ‘arbitrary line’.

Tip

• You can change the position and color of each arbitrary line by clicking on a list frame of x1/y1/x2/y2/‘Color’.

• Up to 20 ‘Arbitrary Lines’ can be displayed.

<table>
<thead>
<tr>
<th>No.</th>
<th>The number of the arbitrary line on the graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>The x coordinate of the initially clicked position for the arbitrary line. You can also enter a numeric value by clicking the mouse button twice (not double clicking).</td>
</tr>
<tr>
<td>y1</td>
<td>The y coordinate of the initially clicked position for the arbitrary line. You can also enter a numeric value by clicking the mouse button twice (not double clicking).</td>
</tr>
<tr>
<td>x2</td>
<td>The x coordinate of the second clicked position for the arbitrary line. You can also enter a numeric value by clicking the mouse button twice (not double clicking).</td>
</tr>
<tr>
<td>y2</td>
<td>The y coordinate of the second clicked position for the arbitrary line. You can also enter a numeric value by clicking the mouse button twice (not double clicking).</td>
</tr>
</tbody>
</table>
CHAPTER 2 : OPERATION GUIDE

Color
Color of an arbitrary line in the graph. The 'Color' button is enabled when one row is selected from the list. Click the 'Color' button to display the Color dialog box and specify the color.

DELETE
Deletes the selected arbitrary line. The numbers are automatically changed.

Remove All
Deletes all the arbitrary lines.

Color
Set graph area colors.
The options are the same as those on the Properties of the Pseudocolor graph object. See page 105.

Send
Used to configure the setting to output data to the clipboard.
The options are the same as those on the Properties of the Pseudocolor graph object. See page 106.
2.7.8

xy-Chromaticity Diagram Object

Used to calculate the chromaticity diagram from an image, and used to plot the chromaticity value in the area specified with the Evaluation area frame onto the chromaticity diagram.

Right-click on a display object and select ‘Property’, and the following property dialog box appears.

View

Specify the type of chromaticity diagram to be displayed.

![xy Graph Property dialog box]

Color space

- **Lvxy**
 Select this option to display an xy-chromaticity diagram.

- **Lvu'v’**
 Select this option to display a u'v'-chromaticity diagram.

View Option

- **Color Space Display**
 When this option is checked, the color space within the chromaticity diagram is displayed in color.

Mark

When a pseudocolor graph object exists in the same document window, clicking the mouse button on the pseudocolor graph while holding down the Shift key will display a ‘mark’ at that point. Then, the ‘mark’ showing the data for the position is displayed on the xy-chromaticity diagram. This option is used to set the position and color of the ‘mark’ on the pseudocolor graph. The options are the same as those on the Properties of the Pseudocolor graph object. See page 104.
CHAPTER 2: OPERATION GUIDE

Spot

Configure the required settings when you wish to plot the spot values on the chromaticity diagram (when ‘Draw Spot’ is checked in the right-click menu).

Spot

No.
Display the spot number assigned to the measurement data.

Color
Set the color of the spot values plotted on the chromaticity diagram.
When you select the ‘No.’ or ‘Color’ sections of the list, the ‘Color’ button is enabled. Click the ‘Color’ button to display the Color dialog box, and then specify a color.

Preset

Style
Set the shape of the points representing the spot values plotted on the chromaticity diagram.

Size
Set the size of the points representing the spot values plotted on the chromaticity diagram.

Font
Set the font used for the spot values plotted on the chromaticity diagram.
CHAPTER 2 : OPERATION GUIDE

Distribution

Sets the color of each piece of data when multiple pieces of measurement data are displayed on the chromaticity diagram (when ‘Draw Multi Data’ is checked in the right-click menu).

Data

• **No.**
 Display the value of the measurement data.

• **Color**
 Set the color of the measurement data displayed on the chromaticity diagram.
 When you select the ‘No.’ or ‘Color’ sections of the list, the ‘Color’ button is enabled. Click the ‘Color’ button to display the Color dialog box, and then specify a color.

Color

Set graph area colors.
The options are the same as those on the Properties of the Pseudocolor graph object. See page 105.
2.7.9 Mura Control Object

The Mura control object uses the following calculations:

- Calculate the average of the data in the area of a specified size around individual measurement points (smoothed data).
- Calculate the difference or ratio between the data of each measurement point and the smoothed data.

Double-click on a display object, or right-click it and select ‘Property’, and the following property dialog box appears.

Setting Image

Used to set the pseudocolor graph’s display range.
The options are the same as those on the Properties of the Pseudocolor graph object. See page 100.

View

Used to set up the items to be displayed on the Pseudocolor graph area.
The options are the same as those on the Properties of the Pseudocolor graph object. See page 101.

Setting Mura

Used to specify the size of the area to calculate “the smoothed data which is used as a reference”.

Pixel

The smoothed data is calculated in a square area whose length on one side is the specified number of pixels. The larger the value is, the slower the calculation speed becomes.

When ‘Pixel’ is set to 50, for example, the smoothed data at the measurement point for coordinates (100,100) is calculated as follows:

\[
\frac{\text{Data at coordinates (100,100)} - \text{Average value in the area between coordinates (75,75) and coordinates (124,124)}}{\text{Average value in the area between coordinates (75,75) and coordinates (124,124)}} \times 100
\]

The above formula cannot be used for coordinates (0,0) because they indicate the end of the evaluation area. In this case, the smoothed data is calculated using the following formula:

\[
\frac{\text{Data at coordinates (0,0)} - \text{Average value in the area between coordinates (0,0) and coordinates (24,24)}}{\text{Average value in the area between coordinates (0,0) and coordinates (24,24)}} \times 100
\]
CHAPTER 2: OPERATION GUIDE

Font
Set the font, size, and color of text used in graphs.
The options are the same as those on the Properties of the Pseudocolor graph object. See page 103.

Mark
Clicking the mouse button on the pseudocolor graph will display a ‘mark’ on that point. This option is used to set the position and color of the ‘mark’.
The options are the same as those on the Properties of the Pseudocolor graph object. See page 104.

Color
Set graph area colors.
The options are the same as those on the Properties of the Pseudocolor graph object. See page 105.

Forward
Used to configure the setting to output data to the clipboard.
The options are the same as those on the Properties of the Pseudocolor graph object. See page 106.
2.7.10 RGB Object

An RGB image is displayed based on the measurement data.

Note

The RGB values are obtained by conversion from the XYZ values. If any correction is applied to the XYZ values, such as the user calibration or backlight cancel calculation, the resulting RGB image may have different colors from the actual colors.

Double-click on a display object, or right-click it and select ‘Property’, and the following property dialog box appears.

Setting RGB View

Used when an RGB image to display on the monitor requires color adjustment. The options are the same as those on the Properties of the Spot Object. See page 107.

Adjust

Move the slide bar to the right or left and adjust the color. A reference value is displayed in the box.

Note

Depending on the resolution of your PC, you may not be able to reset the value to the initial value (0) with the slide bar. In such a case, enter “0” directly in the box next to the slide bar.

Mark

Clicking the mouse button on the Pseudocolor graph will display a ‘mark’ on that point. This option is used to set the position and color of the ‘mark’. The options are the same as those on the Properties of the Pseudocolor graph object. See page 104.

Color

Set graph area colors. The options are the same as those on the Properties of the Pseudocolor graph object. See page 105.
2.7.11 Histogram Object

Double-click on a display object, or right-click it and select ‘Property’, and the following property dialog box appears.

V-Axis

Used to configure the settings of the vertical axis of the graph.

Scale
When the Auto checkbox is checked, the maximum value of measurement data will be used.

Max
Range of numerical input: The data is displayed within the range of the specified maximum value.

H-Axis

Used to configure the settings of the horizontal axis of the graph.
The items are the same as those on the ‘Setting Image’ tab on the Pseudocolor graph object. See page 100.

Tip
When the Auto check box is checked, the scale is automatically adjusted according to the size of the histogram object being displayed. If you always want to observe objects with the same scale, uncheck the check box.

Font

Set the font, size, and color of text used in graphs.
The options are the same as those on the Properties of the Pseudocolor graph object. See page 103.

Color

Set graph area colors.
The options are the same as those on the Properties of the Pseudocolor graph object. See page 105.
2.8 Other Functions

2.8.1 Option

There are options which set various items such as the screen background color.

1. Select Tool - Option from the menu.

 The Option dialog box appears.

Scale Setting

Use User Scale
Check this checkbox to set up an original user scale. The coordinate scales for the viewfinder view and spot measurement frames in the ‘Create New,’ ‘New Layout,’ and ‘Edit’ dialog boxes in the ‘Measure’ dialog box are changed in accordance with the setting.

1 Pixel
Specify a value to be treated as one pixel.

Scale
Specify a unit. Select one from the combo box or type an original unit.

Lv & Ev
Specify the item to be set as the unit of luminance.

Note
For ‘luminance centroid distance’ and ‘Area’ in the spot measurement frame, actual values are calculated regardless of the setting of the user scale.

View Color

Color
Specify a color to be set as a background color. This setting affects all pages.
2.8.2 Cascade/Tile

When two or more windows are opened, select whether to cascade or tile them.

1. Select **Window - Cascade or Tile** from the menu.

 The windows are cascaded or tiled.

![Image of windows cascaded or tiled](image)

2.8.3 Error Recovery Function

When starting the application after abnormal termination, the application automatically calls the measurement data and format used just before the abnormal termination. Save the called measurement data/format to a file and then move to the next task.

Note

Due to the error recovery function, you cannot perform measurement with the data/format called until they are saved to a file.

2.8.4 Management of Calibration Files

The software automatically checks the content of calibration files when it is connected to the CA-2500/CA-2000. If no calibration files exist for the lens or if the installed calibration files are older than the calibration information stored in the CA-2500/CA-2000, you will not be able to connect the software to the CA-2500/CA-2000, or you will not be able to select the lens in the **Measure window - Measure** tab - **Lens** combo boxes.

Install the calibration files for the lens and reconnect the CA-2500/CA-2000 and you will be able to select the lens.

2.8.5 Self Diagnosis

When you start measurement with the CA-2500/CA-2000 using the automatic exposure to measure a target with low luminance, the measurement may fail in some rare cases because the optimal exposure posi-
tion cannot be detected. When this phenomenon occurs, you can perform Self Diagnosis and prevent the measurement failure. For the procedure for performing Self Diagnosis, refer to page 172.
2.9 Error Messages

When the software does not work normally during operation, an error message is displayed. The following list shows the type and meaning (content) of error messages and the solutions.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Cause (Content)</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CA-2500/CA-2000 Error Instrument has been disconnected (CODE = %d)</td>
<td>An error has occurred in the CA-2500/CA-2000. The CA-2500/CA-2000 is automatically disconnected.</td>
<td>• Select Instrument - Connect from the menu to connect the CA-2500/CA-2000.</td>
</tr>
<tr>
<td>2 CA-2500/CA-2000 Error Restart CA-2500/CA-2000 (CODE = %d)</td>
<td>An error has occurred in the CA-2500/CA-2000. The CA-2500/CA-2000 is automatically disconnected.</td>
<td>• Turn the measuring instrument OFF/ON, then select Instrument - Connect from the menu to connect the CA-2500/CA-2000.</td>
</tr>
<tr>
<td>3 CA-2500/CA-2000 Communication Error Instrument has been disconnected (CODE = %d)</td>
<td>A communication error between the CA-2500/CA-2000 and the software has occurred. The CA-2500/CA-2000 is automatically disconnected.</td>
<td>• Select Instrument - Connect from the menu to connect CA-2500/CA-2000.</td>
</tr>
<tr>
<td>4 Memory Error Restart software (CODE = %d)</td>
<td>Connection between the software and the CA-2500/CA-2000 failed due to insufficient memory.</td>
<td>• Save the document, close other application software, then restart the software.</td>
</tr>
<tr>
<td>5 CA-2500/CA-2000 Error Fail connect CA-2500/CA-2000 (CODE = %d)</td>
<td>A communication error between the CA-2500/CA-2000 and the software has occurred. The CA-2500/CA-2000 is automatically disconnected.</td>
<td>• Select Instrument - Connect from the menu to connect CA-2500/CA-2000.</td>
</tr>
<tr>
<td>6 CA-2500/CA-2000 Fail command (CODE = %d)</td>
<td>A command could not be executed in the CA-2500/CA-2000 for some reason (such as current execution of another command).</td>
<td>• Re-execute the operation executed last. • If the error persists: - Select Instrument - Disconnect from the menu. - Turn the measuring instrument OFF/ON. - Select Instrument - Connect from the menu to connect the CA-2500/CA-2000.</td>
</tr>
<tr>
<td>7 Incorrect Input Value (CODE = %d)</td>
<td>A setting value for user-specified calibration is expected to be invalid.</td>
<td>• Change the setting value to an appropriate value.</td>
</tr>
<tr>
<td>8 Auto exposure failed.</td>
<td>There is intermittent light on the measurement target.</td>
<td>• Select ‘Synchronized Measurement’ for ‘Condition’ and try the measurement again. • If this message appears again, use manual exposure for the measurement. Self Diagnosis has not been performed.</td>
</tr>
<tr>
<td>9 No calibration files Install calibration files. (CODE = %d)</td>
<td>The calibration coefficient files have not been installed in the specified folder.</td>
<td>Install the files again, or change the folder by selecting Option - File Path from the menu.</td>
</tr>
<tr>
<td>Error Message</td>
<td>Cause (Content)</td>
<td>Solution</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 10 Some calibration files are old. Cannot use some lenses. (CODE = %d) | Some calibration coefficient files are older than the calibration date of the CA-2500/CA-2000. | • Some lenses can’t be used (can’t be selected). You can still use the software in this condition.
• To use the lenses that can’t be used, install new calibration coefficient files for them and reconnect the measuring instrument. |
| 11 User Abort | Measurement was interrupted by clicking the Cancel button. | • You can continue to use the software. |
| 12 Lv is out of range. | The Lv value exceeds the calculation range in user calibration. | • Change Lv to 1,000,000 or less, or change the value after calibration to 100 times or less the value before calibration. |
| 13 x is out of range. | The x value exceeds the calculation range in user calibration. | • Change x to a value to between 0 and 0.9999 (exclusive of 0). |
| 14 y is out of range. | The y value exceeds the calculation range in user calibration. | • Change y to a value to between 0 and 0.9999 (exclusive of 0). |
| 15 x and y are out of range. | The x and y values exceed the calculation range in user calibration. | • Change the values to equal not more than 1 when they are totaled. |
| 16 Calibration value is inappropriate. | The setting value can’t be calculated in user calibration. | • Change the Lv, x, and y values. |
CHAPTER 3
AUTOMATION

3.1 Supported Software ... 128
3.2 Basic Operation Flow ... 129
3.3 Configuring the Development Environment 130
3.4 Procedure for Establishing and Terminating Connection with the CA-S20w 131
3.5 Command Configuration .. 132
3.6 Program Control Flow .. 134
3.7 Main Object Commands .. 135
 3.7.1 Document Commands... 135
 3.7.2 Measurement Data Commands .. 137
 3.7.3 Measurement Commands ... 139
 3.7.4 Spot Commands ... 149
 3.7.5 Other ... 150
3.8 Measurement Conditions Object Commands 152
 3.8.1 Measurement Conditions Commands 153
 3.8.2 User Calibration Commands .. 159
 3.8.3 Spot Commands ... 160
3.9 User Calibration Coefficient Object Commands 161
3.10 Spot Setting Conditions Object Commands 163
3.11 Spot Object Commands .. 167
3.1 Supported Software

The following application software supports automated operation of the CA-S20w.

When the OS is Windows XP:
- Visual Basic .NET 2003
- Visual C++ .NET 2003
- Excel 2003

When the OS is Windows Vista:
- Visual Basic.Net 2005
- Visual C++.Net 2005
- Excel 2007

When the OS is Windows 7:
- Visual Basic 2010 (Only 32-bit applications operate.)
- Excel 2007, 2010 (For Excel 2010, only the 32-bit version of the software operates.)

This document describes how to use CA-S20w with VB or VBA (Excel 2003). To use it from Visual C++, contact your place of purchase or an authorized Konica Minolta service facility.
3.2 Basic Operation Flow

The following describes the basic flow of operation when controlling the CA-S20w by automation.

- Starting the CA-S20w
- Starting the automation program
- Opening a new or existing measurement file
- Executing connection, measurement, data retrieval and other commands
- Ending the automation program
- Shutting down the CA-S20w

Note

- Start automation programs after starting CA-S20w, and end them before ending CA-S20w. If you end CA-S20w before ending an automation program, you may not be able to restart CA-S20w because the CAS20W.exe process is still running.
3.3 Configuring the Development Environment

Setup Procedure for Microsoft Excel

1. In the Macro edit screen, (a screen of Microsoft Visual Basic), click ‘Tools’-‘References’ from the menu.

2. In ‘Available References’ in the References dialog box, find ‘CAS20w’ and check the checkbox.

Setup Procedure for Visual Basic .NET 2003

1. Select ‘Projects’ from the development environment menu and click ‘Add Reference’.

2. From the Add Reference dialog box, open the ‘COM’ tab page. Select ‘CAS20W’ from the list and then click the ‘Select’ button.

3. Check that ‘CAS20W’ is displayed in the ‘Selected Components’ field at the bottom of the page, and then click the OK button.
3.4 Procedure for Establishing and Terminating Connection with the CA-S20w

When Using Visual Basic

1. Before starting the program, declare the variable representing CA-S20w.

 [Example] Dim CA20App As Object

2. Assign CA-S20w to an object.

 CA20App = CreateObject("CAS20W.Application")

3. When ending the program, execute the following statement:

 CA20App = Nothing

When Using Excel

1. Before starting the program, declare the variable representing CA-S20w.

 [Example] Dim CA20App As Object

2. Assign CA-S20w to an object.

 Set CA20App = CreateObject("CAS20W.Application")

3. Execute the following statement when terminating the program.

 Set CA20App = Nothing

Note

When using Visual Basic, .NET, the garbage collection process automatically releases defined objects when the .NET program is ended, even if you don’t call the ‘Set CAS20wAPP = Nothing’ command. When running a program that uses automation, execute it after starting CA-S20w, and end it before ending CA-S20w. If you end CA-S20w before ending an automation program, you may not be able to restart CA-S20w because the CAS20W.exe process is still running.
3.5 Command Configuration

CA-S20w automation functions have the configuration shown below.

Main object

- `Main.exe`
 - `ShowApplication`
 - `OpenFile`
 - `SaveFile`
 - `CloseDocument`
 - `SelectDocument`
 - `GetMeasurementCondition`
 - `SetMeasurementCondition`
 - `GetSpotCondition`
 - `SetSpotCondition`

Measurement conditions object

- `Measurement conditions`
 - `LensType`
 - `LensPosition`
 - `IsAvailableLens`
 - `GetLensPositionCount`
 - `GetUserCalibrationData`
 - `SetUserCalibrationData`
 - `GetDefaultSpotCondition`
 - `SetDefaultSpotCondition`

User calibration coefficient object

- `User calibration coefficients`
 - `CalibrationType`
 - `RLv_before`
 - `RLv_after`
 - `Rx_before`
 - `Rx_after`

Spot settings object

- `Spot settings conditions`
 - `GetSpotCount`
 - `CreateSpot`
 - `GetSpotSetting`
 - `SetSpotSetting`

Spot object

- `Spot`
 - `Left`
 - `Top`
 - `Right`
 - `Bottom`
Main objects
The target objects when performing CA-S20w operations. Enable operations such as measurement, and opening or saving files.

Measurement conditions objects
The target objects when performing CA-S20w measurement conditions operations. Can be acquired from main objects. Enable detailed measurement conditions settings.

User calibration coefficient objects
Objects that sets the user calibration coefficients. Can be acquired from measurement conditions objects. Let you set a user calibration, when one is desired.

Spot setting conditions objects
Objects that set spots. Can be acquired from main objects or measurement conditions objects. Can be used to copy spot setting conditions from one set of measurement data to another, or to set the default spot setting conditions for the next measurement.

Spot objects
Objects that set the placement of individual spots. Can be acquired from spot setting conditions objects.
3.6 Program Control Flow

The basic flow of operations used for the CA-S20w control is shown below.

User program

1. Start CA-S20w.
2. Create the main object:

   ```vba
   CA20App = CreateObject (CAS20W.Application)
   ```
3. Open (or create) the file used to add measurement data:

   ```vba
   CA20App.OpenFile
   ```
4. Connect CA-2500/CA-2000:

   ```vba
   CA20App.ConnectInstrument
   ```
5. Set the measurement conditions:

   ```vba
   Condition = CA20App.GetMeasurementCondition()
   Condition.ExposureTableIndex = 1
   Condition.Additional = 3
   ```
6. Set the user calibration coefficients:

   ```vba
   UserCalib = Condition.GetUserCalibrationData()
   SpotCond = Acquired with Condition.GetUserCalibrationData() method.
   UserCalib.WLv_before = 150.67
   UserCalib.WLv_after = 160.00
   ```
7. Set the user calibration coefficients in the measurement conditions object:

   ```vba
   Condition.SetUserCalibrationData(UserCalib)
   ```
8. Set the spot setting conditions:

   ```vba
   SpotCond = Condition.GetDefaultSpotConditionAsFile()
   SpotCond = Acquired with Condition.GetDefaultSpotConditionAsFile() method.
   ```
9. Set the spot setting conditions in the measurement conditions object:

   ```vba
   Condition.SetDefaultSpotCondition(SpotCond)
   ```
10. Set the measurement conditions in the CA-S20w object:

    ```vba
    CA20App.SetMeasurementCondition(Condition)
    ```
11. Perform measurement:

    ```vba
    CA20App.Measure
    CA20App.PollingMeasure
    ```
12. Load the measurement data:

    ```vba
    CA20App.GetAreaData
    ```
13. Save the measurement data:

    ```vba
    CA20App.SaveFile
    ```
14. Perform the end process (when using Excel VBA):

    ```vba
    Condition = Nothing
    UserCalib = Nothing
    SpotCond = Nothing
    CA20App = Nothing
    ```
15. End CA-S20w.
3.7 Main Object Commands

3.7.1 Document Commands

3.7.1.1 Showing/Hiding the CA-S20w

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>ShowApplication(Index As Long) As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>Index</td>
</tr>
<tr>
<td></td>
<td>0 : Shows the CA-S20w</td>
</tr>
<tr>
<td></td>
<td>1 : Hides the CA-S20w</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>When the command was executed successfully : 0</td>
</tr>
<tr>
<td></td>
<td>When command execution failed : -1</td>
</tr>
<tr>
<td>Description</td>
<td>Executes Show/Hide of the CA-S20w.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>CA20App.ShowApplication(1) 'Shows the CA-S20w</td>
</tr>
<tr>
<td></td>
<td>CA20App.ShowApplication(0) 'Hides the CA-S20w</td>
</tr>
</tbody>
</table>

3.7.1.2 Opening a Specified File/Opening a New Document

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>OpenFile(Filename As String) As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>Filename</td>
</tr>
<tr>
<td></td>
<td>Specifies the full-path name of the folder to open.</td>
</tr>
<tr>
<td></td>
<td>If the folder name is a null string, opens a new document.</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>When the command was executed successfully : 0</td>
</tr>
<tr>
<td></td>
<td>When command execution failed : -1</td>
</tr>
<tr>
<td>Description</td>
<td>Opens a measurement data file or opens a new document.</td>
</tr>
<tr>
<td></td>
<td>When a character “\” for indicating the directory is required, repeat it twice.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>Dim strName As String</td>
</tr>
<tr>
<td></td>
<td>strName = "C:\Documents and Settings\CAS20w\test"</td>
</tr>
<tr>
<td></td>
<td>CA20App.OpenFile(strName)</td>
</tr>
</tbody>
</table>

3.7.1.3 Saving a File

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>SaveFile(Filename As String) As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>Filename</td>
</tr>
<tr>
<td></td>
<td>Specifies the full-path name of the folder to save.</td>
</tr>
<tr>
<td></td>
<td>If the folder name is a null string, opens the ‘Save File’ dialog.</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>When the command was executed successfully : 0</td>
</tr>
<tr>
<td></td>
<td>When command execution failed : -1</td>
</tr>
<tr>
<td>Description</td>
<td>Saves a measurement data file into a folder specified by an argument.</td>
</tr>
<tr>
<td></td>
<td>When there is an existing file with the same file name, the file is saved by overwriting the existing file.</td>
</tr>
<tr>
<td></td>
<td>When a folder name is not assigned, the Save File dialog box opens.</td>
</tr>
<tr>
<td></td>
<td>When a character “\” for indicating the directory is required, repeat it twice.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>Dim strName As String</td>
</tr>
<tr>
<td></td>
<td>strName = "C:\Documents and Settings\CAS20w\test"</td>
</tr>
<tr>
<td></td>
<td>CA20App.SaveFile(strName)</td>
</tr>
</tbody>
</table>
3.7.1.4 Closing a Document

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>CloseDocument(Index As Long, Flag As Boolean) As Long</th>
</tr>
</thead>
</table>
| Argument on the VB | Index
 Document Number (A number starting from 1 is assigned in the open sequence.)
 Flag
 True : Hide message
 False : Show message
| Return value on the VB | When the command was executed successfully : 0
 When command execution failed : -1
| Description | Closes a document with the Document number specified by an argument.
 When a document with the specified number does not exist, the command fails.
 You can use an argument to display a message box which asks whether to save the document if the document has been changed but not saved.
 Document numbers are assigned in the order in which the documents were opened.
 Document numbers are not fixed values-when a document is closed, the numbers of the documents still open are reassigned to reflect the order in which they were opened.
| Sample scripts on the VB | ```vba
Dim Ret As Long
Dim Index As Long
Dim Flag As Boolean
 Index = 1 'Specifying the first document
 Flag = True 'Hiding the message
 Ret = CA20App.CloseDocument(Index, Flag)
``` |

### 3.7.1.5 Activating a Document

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>SelectDocument(Index As Long) As Long</th>
</tr>
</thead>
</table>
| Argument on the VB    | Index  
  Document Number (A number starting from 1 is assigned in the open sequence.)  
| Return value on the VB | When the command was executed successfully : 0  
  When command execution failed : -1  
| Description | Activates a document with the Document number specified by an argument.  
  When a document with the specified number does not exist, the command fails.  
  When retrieving data, execute this command first.  
  Also execute this command when specifying a document for saving measurement results.  
  Document numbers are assigned in the order in which the documents were opened.  
  Document numbers are not fixed values-when a document is closed, the numbers of the documents still open are reassigned to reflect the order in which they were opened.  
| Sample scripts on the VB | ```vba  
Dim Ret As Long  
Dim Index As Long  
  Index = 1 'Specifying the first document  
  Ret = CA20App.SelectDocument(Index)  
``` |
3.7.2 Measurement Data Commands

3.7.2.1 Switching Displayed Measurement Data

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>SelectData(Num As Long) As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>Num Number of measurement data to be selected (a number starting from 1)</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>When the command was executed successfully : 0 When command execution failed : -1</td>
</tr>
<tr>
<td>Description</td>
<td>Selects measurement data in the active document that will be used for show/data retrieval operation. The data number starting from 1 is assigned on the list of measurement data in descending order. Data can be selected from the currently displayed list of measurement data. The command fails when the number exceeds the total number of data items, when measurement data does not exist, or when 0 or a smaller number is used. The command also fails when no active document exists or no document is opened.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>Dim Ret As Long Dim Num As Long Num = 1 'Selects the first measurement data. Ret = CA20App.SelectData(Num)</td>
</tr>
</tbody>
</table>

3.7.2.2 Deleting Displayed Measurement Data

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>DeleteData(Num As Long, Flag As Boolean) As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>Num Number of measurement data to be deleted (a number starting from 1) Flag True : Hide message Flag : Show message</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>When the command was executed successfully : 0 When command execution failed : -1</td>
</tr>
<tr>
<td>Description</td>
<td>Deletes a specified measurement data in the document currently active. A data number starting from 1 is assigned on the list of measurement data in descending order. Data is deleted from the measurement data list currently displayed. The command fails when the number exceeds the total number of data items, when measurement data does not exist, or when 0 or a smaller number is used. The command also fails when no active document exists or no document is opened. You can use an argument to specify a message box which asks whether to delete the data.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>Dim Ret As Long Dim Num As Long Dim Flag As Boolean Num = 1 'Deletes the first measurement data. Flag = True 'Hiding the message Ret = CA20App.DeleteData(Num, Mode)</td>
</tr>
</tbody>
</table>
3.7.2.3 Acquiring the Measurement Data Image Size

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>GetAreaSize(Width As Long, Height As Long) As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>Width</td>
</tr>
<tr>
<td></td>
<td>The maximum width that can be acquired.</td>
</tr>
<tr>
<td></td>
<td>Height</td>
</tr>
<tr>
<td></td>
<td>The maximum height that can be acquired.</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>When the command was executed successfully : 0</td>
</tr>
<tr>
<td></td>
<td>When command execution failed : -1</td>
</tr>
<tr>
<td>Description</td>
<td>Acquires the image size of measurement data in the document currently active.</td>
</tr>
<tr>
<td></td>
<td>The command fails when no measurement data exists.</td>
</tr>
<tr>
<td></td>
<td>The command also fails when no active document exists or no document is opened.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>Dim Ret As Long</td>
</tr>
<tr>
<td></td>
<td>Dim Width As Long</td>
</tr>
<tr>
<td></td>
<td>Dim Height As Long</td>
</tr>
<tr>
<td></td>
<td>Ret = CA20App.GetAreaSize(Width, Height)</td>
</tr>
</tbody>
</table>

3.7.2.4 Acquiring the Measurement Data List Count

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>GetDataCount() As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>None</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>Number of measurement data items in current measurement list</td>
</tr>
<tr>
<td>Description</td>
<td>Acquires the number of measurement data items in the 'Measurement Data List' currently displayed in the active document.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>Dim Ret As Long</td>
</tr>
<tr>
<td></td>
<td>Ret = CA20App.GetDataCount()</td>
</tr>
</tbody>
</table>

3.7.3 Measurement Commands

3.7.3.1 Connecting with an Instrument

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>ConnectInstrument() As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>None</td>
</tr>
</tbody>
</table>
| Return value on the VB| When the command was executed successfully : 0
 | When command execution failed : -1 |
| Description | Connects to an instrument.
 | Executing this command displays the Connect Instrument dialog box.
 | Select an instrument and click the OK button.
 | When establishing a connection fails, the measurement failure occurs. |
| Sample scripts on the VB| Dim Ret As Long |
| | Ret = CA20App.ConnectInstrument() |

Note

Even when the day specified in ‘Interval (number of days) at which to show this dialog’ in the Self Diagnosis starting dialog box (refer to page 172) is reached, this dialog box is not displayed when the CA-2500/CA-2000 is controlled automatically by the CA-S20w.

To perform Self Diagnosis because the automatic exposure fails or for any other reason, select Instrument - Self Diagnosis from the menu bar of the CA-S20w.

3.7.3.2 Checking Whether the Instrument Is Connected

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>InConnectInstrument() As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>None</td>
</tr>
</tbody>
</table>
| Return value on the VB| When the command was executed successfully :
 | Connected: Body number
 | Disconnected: 0
 | When command execution failed : -1 |
| Description | Checks whether the instrument is connected. |
| Sample scripts on the VB| Dim Count As Long |
| | Count = CA20App.GetInstrumentCount() |

3.7.3.3 Acquiring the Connectable Measuring Instrument Count

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>GetInstrumentCount() As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>None</td>
</tr>
</tbody>
</table>
| Return value on the VB| When the command was executed successfully :
 | Returns the number of connectable measuring instruments.
 | When command execution failed : -1 |
| Description | Returns the number of connectable measuring instruments.
 | If the command fails, check that CA-2500/CA-2000’s power is ON and that the USB cable is connected to the PC. |
| Sample scripts on the VB| Dim Count As Long |
| | Count = CA20App.GetInstrumentCount() |
3.7.3.4 Acquiring the Measuring Instrument Body Number

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>GetInstrumentNumber() As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>Index</td>
</tr>
<tr>
<td></td>
<td>Specifies the number acquired by GetInstrumentCount.</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>When the command was executed successfully: Returns the body number. When command execution failed: -1</td>
</tr>
<tr>
<td>Description</td>
<td>Returns the body number for the specified index number. If the command fails, check that CA-2500/CA-2000’s power is ON and that the USB cable is connected to the PC.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>Dim Count As Long
Dim Number As Long
Dim i As Long
Count = CA20App.GetInstrumentCount()
For i = 1 To Count
 Number = CA20App.GetInstrumentNumber(i)
Next i</td>
</tr>
</tbody>
</table>

3.7.3.5 Connecting the Measuring Instrument With the Specified Body Number

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>ConnectInstrumentEx(BodyNo As Long, Flag1 As Variant, Flag2 As Variant) As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>BodyNo
Body number of measuring instrument to connect
Flag1
Parameter for future use (always specifies 0)
Flag2
Parameter for future use (always specifies 0)</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>When the command was executed successfully: 0
When command execution failed: -1</td>
</tr>
<tr>
<td>Description</td>
<td>Connects the measuring instrument that has the specified body number. If connection fails, restart CA-2500/CA-2000 and CA-S20w. When a measuring instrument is already connected and this command is executed, the command succeeds if the number of the connected measuring instrument was specified, and fails if a different number was specified.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>Dim Ret As Long
Ret = CA20App.ConnectInstrument(1001005, 0, 0)</td>
</tr>
</tbody>
</table>

Note

Even when the day specified in ‘Interval (number of days) at which to show this dialog’ in the Self Diagnosis starting dialog box (refer to page 172) is reached, this dialog box is not displayed when the CA-2500/CA-2000 is controlled automatically by the CA-S20w.

To perform Self Diagnosis because the automatic exposure fails or for any other reason, select Instrument - Self Diagnosis from the menu bar of the CA-S20w.

3.7.3.6 Disconnecting From the Instrument

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>DisconnectInstrument()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>None</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>None</td>
</tr>
<tr>
<td>Description</td>
<td>Disconnects from the instrument. When no instrument is connected, nothing occurs. If an instrument is connected, the connection with the instrument is cut regardless of the body number.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>CA20App.DisconnectInstrument()</td>
</tr>
</tbody>
</table>
3.7.3.7 Disconnecting From the Instrument By Specifying the Body Number.

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>DisconnectInstrumentEx(BodyNo As Long, Flag1 As Variant, Flag2 As Variant) As Long</th>
</tr>
</thead>
</table>
| Argument on the VB | BodyNo
Body number of the instrument to be disconnected
Flag1
Parameter for future use (always specifies 0)
Flag2
Parameter for future use (always specifies 0) |
| Return value on the VB | When the command was executed successfully : 0
When command execution failed : -1 |
| Description | Disconnects from the instrument by specifying the body number.
Be sure to specify the body number of the connected instrument.
The operation fails when an instrument is connected but the specified measurement number is different from that of the instrument. |
| Sample scripts on the VB | Dim BodyNo As Long
BodyNo = 1001005
Ret = CA20App.ConnectInstrument(BodyNo, 0, 0)
Ret = CA20App.DisconnectInstrument(BodyNo, 0, 0) |

3.7.3.8 Measuring an Object

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>Measure() As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>None</td>
</tr>
</tbody>
</table>
| Return value on the VB | When the command was executed successfully : 0
When command execution failed : -1 |
| Description | Starts a measurement.
The return value is returned immediately after the command is executed.
Even if the measurement is not completed successfully due to some cause such as excessive light quantity, this command returns a success value (0) as long as the measurement started properly. If you want to check whether the measurement was completed, or if a light quantity error occurred, you need to use PollingMeasure.
The measurement result is stored in the document currently active.
The command fails when no active document exists or no document is opened. |
| Sample scripts on the VB | Dim Ret As Long
Ret = CA20App.Measure()
' Measures an object.
Do
Ret = MsgBox("Cancel ?", MsgBoxStyle.OKCancel, ",")
If Ret = MsgBoxResult.OK Then
If CA20App.MeasureCancel() = 0 Then
' Was the Cancel button pressed?
Exit Do
End If
Else
If CA20App.PollingMeasure() = 0 Then
' Is a measurement completed?
Exit Do
End If
End If
Loop Until Ret = MsgBoxResult.OK |
Measurement data is temporarily retained in the temporary work area until it is saved by the user. The temporary data is stored in the following location:

C: \Document and Settings \<login user name> \Local Settings \Temp \mcl

If measurement is continued without saving the measurement data, such as long-time continuous measurement on a production line or for checking the deterioration effects of time, the backup data is retained until the data save operation is performed. Consequently, you need to follow the steps below to use automation commands to perform measurements continuously.

1) Use the SetMode(1) function in order not to retain backup data.
2) Use the SetMode(2) and DeleteData functions to delete data after each measurement. (Executing SetMode(2) automatically deletes the backup data.)
3) Save data manually for every measurement.
For details of the SetMode function, see page 152.

Example of step 1 (VB)
Dim Ret As Long
Dim Mode As Long
Mode = 1
Ret = CA20App.SetMode(Mode) 'Set Mode 1.
Ret = CA20App.SetMode() 'Performs a measurement.
if Ret <> -1 Then
 Do
 Ret = CA20App.PollingMeasure()
 Loop Until Ret = 0 Or Ret = -1
 End If

Example of step 2 (VB)
Dim Ret As Long
Dim Mode As Long
Mode = 2
Ret = CA20App.SetMode(Mode) 'Set Mode 2.
Ret = CA20App.SetMode() 'Performs a measurement.
if Ret <> -1 Then
 Do
 Ret = CA20App.PollingMeasure()
 Loop Until Ret = 0 Or Ret = -1
 CA20App.DeleteData(1,True) 'Deletes the first data.
 End If

Example of step 3 (VB)
Dim Ret As Long
Ret = CA20App.SetMode() 'Performs a measurement.
if Ret <> -1 Then
 Do
 Ret = CA20App.PollingMeasure()
 Loop Until Ret = 0 Or Ret = -1
 CA20App.DeleteData(1,True) 'Deletes the first data.
 CA20App.SaveFile("C: \Document And Settings \CAS20w \Temp")
 'Saves empty data in the Temp folder.
 End If
3.7.3.9 Checking the Completion of a Measurement

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>PollingMeasure() As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>None</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td></td>
</tr>
<tr>
<td>Measurement is in progress: 99</td>
<td></td>
</tr>
<tr>
<td>Measurement is completed or in standby mode: 0</td>
<td></td>
</tr>
<tr>
<td>When command execution failed: -1</td>
<td></td>
</tr>
</tbody>
</table>

| Description | Checks whether the measurement is in progress or standby mode. If the measurement operation finishes but the measurement is not completed successfully due to some cause such as excessive light quantity, this command returns a failed value (-1). This command fails when the PC is not connected to an instrument. The command fails when no active document exists or no document is opened. |

<table>
<thead>
<tr>
<th>Sample scripts on the VB</th>
<th>Dim Ret As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ret = CA20App.Measure()</td>
<td>'Performs a measurement.</td>
</tr>
<tr>
<td>Do</td>
<td></td>
</tr>
<tr>
<td>Ret = MsgBox("Cancel ", MsgBoxStyle.OKCancel, ")</td>
<td></td>
</tr>
<tr>
<td>If Ret = MsgBoxResult.OK Then</td>
<td></td>
</tr>
<tr>
<td>If CA20App.MeasureCancel() = 0 Then</td>
<td>'Was the Cancel button pressed?</td>
</tr>
<tr>
<td>Exit Do</td>
<td></td>
</tr>
<tr>
<td>End If</td>
<td></td>
</tr>
<tr>
<td>Else</td>
<td></td>
</tr>
<tr>
<td>If CA20App.PollingMeasure() = 0 Then</td>
<td>'Is a measurement completed?</td>
</tr>
<tr>
<td>Exit Do</td>
<td></td>
</tr>
<tr>
<td>End If</td>
<td></td>
</tr>
<tr>
<td>End If</td>
<td></td>
</tr>
<tr>
<td>Loop Until Ret = MsgBoxResult.OK</td>
<td></td>
</tr>
</tbody>
</table>

3.7.3.10 Canceling a Measurement

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>MeasureCancel() As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>None</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td></td>
</tr>
<tr>
<td>Cancels a measurement.</td>
<td></td>
</tr>
</tbody>
</table>

| Description | The command execution fails in the following cases: When the PC is not connected to an instrument. When no active document exists. When no document is opened. |

<table>
<thead>
<tr>
<th>Sample scripts on the VB</th>
<th>Dim Ret As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ret = CA20App.Measure()</td>
<td>'Performs a measurement.</td>
</tr>
<tr>
<td>Do</td>
<td></td>
</tr>
<tr>
<td>Ret = MsgBox("Cancel ", MsgBoxStyle.OKCancel, ")</td>
<td></td>
</tr>
<tr>
<td>If Ret = MsgBoxResult.OK Then</td>
<td></td>
</tr>
<tr>
<td>If CA20App.MeasureCancel() = 0 Then</td>
<td>'Was the Cancel button pressed?</td>
</tr>
<tr>
<td>Exit Do</td>
<td></td>
</tr>
<tr>
<td>End If</td>
<td></td>
</tr>
<tr>
<td>Else</td>
<td></td>
</tr>
<tr>
<td>If CA20App.PollingMeasure() = 0 Then</td>
<td>'Is a measurement completed?</td>
</tr>
<tr>
<td>Exit Do</td>
<td></td>
</tr>
<tr>
<td>End If</td>
<td></td>
</tr>
<tr>
<td>End If</td>
<td></td>
</tr>
<tr>
<td>Loop Until Ret = MsgBoxResult.OK</td>
<td></td>
</tr>
</tbody>
</table>
3.7.3.11 Acquiring Measurement Data

<table>
<thead>
<tr>
<th>Argument on the VB</th>
<th>Method name on the VB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>GetAreaData(As Long, Left As Long, Top As Long, Right As Long, Bottom As Long, MesData As Long) As Long</td>
</tr>
</tbody>
</table>

- **Element**: Number of Color type to be acquired.
- **Left**: Left coordinate of the image data
- **Top**: Upper coordinate of the image data
- **Right**: Right coordinate of the image data
- **Bottom**: Lower coordinate of the image data
- **MesData**: Dim MesData ([Number of measurement data items]) As Single

The image data is stored in raster format starting from the top-left in the rightward direction.

Return value on the VB
- When the command was executed successfully: 0
- When command execution failed: -1

Description
- Acquires the specified colorimetric value and measured value of the currently selected measurement data.
- When you specify a color value number other than the value specified for ‘Element’, the command fails if no measurement data exists.
- The command also fails when no active document exists or no document is opened.
- You must set the values so that ‘Left’ < ‘Right’ and ‘Top’ < ‘Bottom’. Set the coordinates carefully, since the supported coordinate range varies according to the set resolution.

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Supported coordinate range</th>
</tr>
</thead>
<tbody>
<tr>
<td>490*490</td>
<td>0 to 488, 1 to 489</td>
</tr>
<tr>
<td>980*980</td>
<td>0 to 978, 1 to 979</td>
</tr>
<tr>
<td>196*196</td>
<td>0 to 194, 1 to 195</td>
</tr>
</tbody>
</table>

The command fails if an unsupported number is specified.

<Note>
The measured image may contain values that indicate errors. The following value is assigned to a pixel with an error such as a calculation error.
- **Over-error pixel**: Assigned when an extremely bright image was measured.
 - -3.028231e + 38
- **Under-error pixel**: Assigned when an extremely dark image was measured.
 - -2.4028230e + 38
- **Calculation error pixel**: Assigned when colorimetric data is calculated.
 - -1.4028230e + 38

When any of these values is contained in an image, the pixels are erroneous. Do not use them for evaluation such as calculation. To judge these values, use the following procedure because they may include some errors:

Example
```
VB
If Value < -3.0E+38 Then
  ‘Over-error pixel
ElseIf Value < -2.0E+38 And Value >= -3.0E+38 Then
  ‘Under-error pixel
ElseIf Value < -1.0E+38 Then
  ‘Calculation error pixel
Else
  ‘Normal pixel
End If
```
Sample scripts on the VB

```vbnet
' Acquires the image size.
Dim Ret As Long
Dim Left As Long
Dim Top As Long
Dim Right As Long
Dim Bottom As Long
Dim Element As Long
Dim Width As Long
Dim Height As Long

Ret = CA20App.GetAreaSize(Width, Height) ' Acquires the size of measurement data.
Dim MesData(Width * Height) As Single ' Reserves an array with the size of the image.
Element = 3 ' Acquires the Lv data.
Left = 0
Top = 0
Right = Width -1
Bottom = Height -1
Ret = CA20App.GetAreaData(Element, Left, Top, Right, Bottom, MesData)
```
3.7.3.12 Acquiring Spot Data

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>GetSpotData(Element As Long, SpotData As Single) As Long</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Argument on the VB</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Color type to be acquired.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SpotsData</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dim SpotData ([Spot Count]) As Single</td>
</tr>
</tbody>
</table>

| Specify an array to contain the acquired spot data. The data is contained sequentially from spot number 1. |

<table>
<thead>
<tr>
<th>Return value on the VB</th>
</tr>
</thead>
<tbody>
<tr>
<td>When the command was executed successfully: 0</td>
</tr>
<tr>
<td>When command execution failed: -1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquires the spot data set to the currently selected measurement data.</td>
</tr>
<tr>
<td>This command fails if the number specifying colorimetric data exceeds the number of factors of the colorimetric system, if the measurement data does not exist, or if a value smaller than 0 is used.</td>
</tr>
<tr>
<td>The command also fails when no active document exists or no document is opened.</td>
</tr>
<tr>
<td>To acquire the number of spots, refer to “3.7.4.1 Acquiring Spot Setting Conditions Set in Specified Measurement Data” and “3.7.4.2 Acquiring Spot Setting Conditions From Files”.</td>
</tr>
</tbody>
</table>

<Note>

The measured image may contain values that indicate errors. The following values are assigned to a pixel with an error such as a calculation error.

- Over-error pixel: Assigned when an extremely bright image was measured.
 -3.028231e + 38
- Under-error pixel: Assigned when an extremely dark image was measured.
 -2.4028230e + 38
- Calculation error pixel: Assigned when colorimetric data is calculated.
 -1.4028230e + 38

When any of these values is contained in an image, the pixels are erroneous. Do not use them for evaluations such as calculation. To judge these values, use the following procedure because they may include some errors:

Example)

VB

```
If Value < -3.0E+38 Then
  'Over-error pixel
ElseIf Value < -2.0E+38 And Value >= -3.0E+38 Then
  'Under-error pixel
ElseIf Value < -1.0E+38 Then
  'Calculation error pixel
Else
  'Normal pixel
End If
```

Sample scripts on the VB

- Acquires the image size.
 Dim Ret As Long
 Dim Element As Long
 Dim SpotCond As Object
 Dim SpotCond As Long
 SpotCond = CA20App.GetSpotCondition() ' Acquires the spot setting condition object.
 SpotCount = SpotCond.GetSpotCount() ' Acquires the number of spots.
 Dim SpotData(Spot) As Single ' Reserves an array which can contain the acquired spots.
 Element = 3 ' Acquires the spot value of Lv data.
 Ret = CA20App.GetAreaData(Element, SpotData)
3.7.3.13 Acquiring the Information of Measurement Data

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>GetDataProperty(Name As String, Comment As String, Date As String) As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>Name
· Name assigned to the measurement data
Comment
· Comment assigned to the measurement data
Date
· Date of measurement
The following is the format of an acquired string.
"YY,MM,DD,hh,mm,ss"</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>When the command was executed successfully : 0
When command execution failed : -1</td>
</tr>
<tr>
<td>Description</td>
<td>The command fails when no active document exists or no document is opened.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>Dim Ret As Long
Dim sName As String
Dim sComment As String
Dim sDate As String
Ret = CA20App.GetDataProperty(sName, sComment, sDate)</td>
</tr>
</tbody>
</table>

3.7.3.14 Showing/Hiding a Measure Dialog Box

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>ShowSettingDialog(Index As Long) As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>Index
1 : Display measurement conditions dialog.
0 : Hide measurement conditions dialog.</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>When the command was executed successfully : 0
When command execution failed : -1</td>
</tr>
<tr>
<td>Description</td>
<td>Displays the Measure dialog box.
The command execution fails in the following cases:
When the PC is not connected to an instrument.
When no active document exists.
When no document is opened.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>Dim Ret As Long
Dim Index As Long
Index = 1 'Displays the Measure dialog box.
Ret = CA20App.ShowSettingDialog(Index)</td>
</tr>
</tbody>
</table>

3.7.3.15 Acquiring Measurement Conditions

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>GetMeasurementCondition() As Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>None</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>Returns a measurement conditions object. For more information on measurement conditions objects, see "4.8 Measurement Conditions Object Commands".</td>
</tr>
<tr>
<td>Description</td>
<td>Acquires a measurement conditions object.
This command fails when the PC is not connected to an instrument.
The command fails when no active document exists or no document is opened.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>Dim Condition As Object
Condition = CA20App.GetMeasurementCondition()</td>
</tr>
</tbody>
</table>
3.7.3.16 Acquiring Measurement Conditions From Files

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>GetMeasurementConditionAsFile(FileName As String) As Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>FileName</td>
</tr>
<tr>
<td></td>
<td>Specifies the file name. You must specify full-path file names.</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>Returns the measurement conditions object to which the settings read from the file have been applied. For more information on measurement conditions objects, see “4.8 Measurement Conditions Object Commands”. This command fails when the PC is not connected to an instrument. The command fails when no active document exists or no document is opened.</td>
</tr>
<tr>
<td>Description</td>
<td>Acquires a measurement conditions object from a file. Just executing this method does not apply the measurement conditions to CA-S20w. To set the measurement conditions read from the file in CA-S20w, you must execute the SetMeasurementCondition method to set the measurement conditions object. When a folder name is not assigned, the Save File dialog box opens. When a character “/” for indicating the directory is required, repeat it twice.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>Dim Condition As Object</td>
</tr>
<tr>
<td></td>
<td>Dim strName As String</td>
</tr>
<tr>
<td></td>
<td>strName = "C:\Documents and Setting\CAS20w\Condition1.cas"</td>
</tr>
<tr>
<td></td>
<td>Condition = CA20App.GetMeasurementConditionAsFile(strName)</td>
</tr>
</tbody>
</table>

3.7.3.17 Setting Measurement Conditions

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>SetMeasurementCondition(Condition As Object) As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>Condition</td>
</tr>
<tr>
<td></td>
<td>Specifies the object that will set the measurement conditions. You must specify a measurement conditions object acquired by the GetMeasurementCondition method or GetMeasurementConditionAsFile method. For more information on Condition objects, see “4.8 Measurement Conditions Object Commands”.</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>When the command was executed successfully : 0</td>
</tr>
<tr>
<td></td>
<td>When command execution failed : -1</td>
</tr>
<tr>
<td>Description</td>
<td>Sets the measurement conditions.</td>
</tr>
<tr>
<td></td>
<td>This command fails when the PC is not connected to an instrument. The command fails when no active document exists or no document is opened.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>Dim Ret As Long</td>
</tr>
<tr>
<td></td>
<td>Dim Condition As Object</td>
</tr>
<tr>
<td></td>
<td>Condition = CA20App.GetMeasurementCondition()</td>
</tr>
<tr>
<td></td>
<td>Ret = CA20App.SetMeasurementCondition(Condition)</td>
</tr>
</tbody>
</table>
3.7.4 Spot Commands

3.7.4.1 Acquiring Spot Setting Conditions Set in Specified Measurement Data

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>GetSpotCondition() As Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>None</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>Returns a spot setting conditions object. For more information on spot setting conditions objects, see “4.10 Spot Setting Conditions Object Commands”.</td>
</tr>
<tr>
<td>Description</td>
<td>Acquires the spot setting condition object set to the currently selected measurement data. This command fails if there is no active document, or if no documents are opened.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>Dim SpotCond As Object Dim Ret As Long SpotCond = CA20App.GetSpotCondition()</td>
</tr>
</tbody>
</table>

3.7.4.2 Acquiring Spot Setting Conditions From Files

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>GetSpotConditionAsFile(FileName As String) As Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>FileName Specifies the file name. You must specify full-path file names.</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>Returns the spot setting conditions object to which the settings read from the file have been applied. For more information on spot setting conditions objects, see “4.10 Spot Setting Conditions Object Commands”.</td>
</tr>
<tr>
<td>Description</td>
<td>Acquires a spot setting conditions object from a file. Just executing this method does not apply the spot setting conditions to the measurement data. To set the spot setting conditions read from the file in the measurement data, you must execute the SetSpotCondition method, which sets the spot setting conditions in the specified measurement data. When a character “" for indicating the directory is required, repeat it twice.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>Dim SpotCond As Object Dim StrName As String StrName = "C:\Documents and Setting\CAS20w\Spot1.spt" SpotCond = CA20App.GetSpotConditionAsFile(strName)</td>
</tr>
</tbody>
</table>

3.7.4.3 Setting Spot Setting Conditions in Specified Measurement Data

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>SetSpotCondition(SpotCond As Object) As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>SpotCond Specifies the object that will set the spot setting conditions. You must specify a spot setting conditions object acquired by the GetSpotCondition method or GetSpotConditionAsFile method. For more information on SpotCond objects, see “4.10 Spot Setting Conditions Object Commands”.</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>When the command was executed successfully : 0 When command execution failed : -1</td>
</tr>
<tr>
<td>Description</td>
<td>Sets the spot data in the currently selected measurement data. The Command fails when no active document exists or no document is opened.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>Dim Ret As Long Dim SpotCond As Object Dim Num As Long 'Selects the first measurement data item Num = 1 'Acquires the spot setting conditions set in the first measurement data item SpotCond = CA20App.GetSpotCondition(Num) Ret = CA20App.SetSpotCondition(SpotCond)</td>
</tr>
</tbody>
</table>
CHAPTER 3 : AUTOMATION

3.7.5 Other

3.7.5.1 Setting CA-S20w’s Operation Mode

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>SetMode(Index As Long) As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>Index</td>
</tr>
<tr>
<td></td>
<td>The following modes can be set:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement method No.</th>
<th>Measurement method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Create a backup file for each measurement and add data to the list. Deletion of a backup file: Invalid</td>
</tr>
<tr>
<td>1</td>
<td>Overwrite a backup file and overwrite the data at the end of the list.</td>
</tr>
<tr>
<td>2</td>
<td>Create a backup file for each measurement and add data to the list. Deletion of a backup file: Valid</td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

| Return value on the VB | When the command was executed successfully : 0 |
| | When command execution failed : -1 |

| Description | When “Do not create backup files” is selected, only the first piece of data will be the backup data created during measurement. When “Delete backup data” is selected, the backup data will be deleted when DeleteData deletes the measurement data. |

Sample scripts on the VB	Dim Ret As Long
	Dim Index As Long
	Index = 1
	Ret = CA20App.SetMode(Index)

3.7.5.2 Saving View Screen Graphs or Images in Bitmap Format

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>SaveObjectAsBMPFile(FileName As String, TabIndex As Long, ObjectIndex As Long) As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>FileName</td>
</tr>
<tr>
<td></td>
<td>Specifies the file name. You must specify full-path file names.</td>
</tr>
<tr>
<td></td>
<td>TabIndex</td>
</tr>
<tr>
<td></td>
<td>Specifies the view screen tab number.</td>
</tr>
<tr>
<td></td>
<td>ObjectIndex</td>
</tr>
<tr>
<td></td>
<td>Specifies the number of the object pasted in the tab window.</td>
</tr>
</tbody>
</table>

| Return value on the VB | When the command was executed successfully : 0 |
| | When command execution failed : -1 |

| Description | Saves the graph or image pasted in the tab window in bitmap format, under the file name specified by the argument. When there is an existing file with the same file name, the file is saved by overwriting the existing file. If the file name is not specified, an error is reported. When a character “\” for indicating the directory is required, repeat it twice. Tab window numbers are assigned sequentially from right to left. The leftmost item is number 1. The command fails if a nonexistent tab number is specified. Object numbers are assigned in the order in which the objects are pasted. The first object pasted is object number 1. The command fails if a nonexistent object number is specified. Bitmap files are saved in 24-bit format. |

Sample scripts on the VB	Dim Ret As Long
	Dim strName As String
	Dim TabIndex As Long
	Dim ObjectIndex As Long
	TabIndex = 1 'Specifies the rightmost tab
	ObjectIndex = 1 'Specifies the first object pasted
	strName = “C:\Documents and Setting\CAS20w\test.bmp”
	Ret = CA20App.SaveObjectAsBMPFile(strName, TabIndex, ObjectIndex)
3.7.5.3 Acquiring Detailed Error Values

<table>
<thead>
<tr>
<th>Error No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Succeeded.</td>
</tr>
<tr>
<td>1</td>
<td>A window frame has not been created.</td>
</tr>
<tr>
<td>2</td>
<td>Measurement dialog is open.</td>
</tr>
<tr>
<td>4</td>
<td>Document is not open.</td>
</tr>
<tr>
<td>5</td>
<td>Measuring instrument is not connected.</td>
</tr>
<tr>
<td>6</td>
<td>Measurement is in progress, so can’t execute.</td>
</tr>
<tr>
<td>7</td>
<td>Already connected, so can’t connect.</td>
</tr>
<tr>
<td>8</td>
<td>Failed to connect with the instrument.</td>
</tr>
<tr>
<td>9</td>
<td>Failed to execute because an instrument is now being connected.</td>
</tr>
<tr>
<td>10</td>
<td>File read/write failed.</td>
</tr>
<tr>
<td>20</td>
<td>Error in parameters.</td>
</tr>
<tr>
<td>21</td>
<td>Error in document selection.</td>
</tr>
<tr>
<td>22</td>
<td>Error in measurement data selection.</td>
</tr>
<tr>
<td>23</td>
<td>Measurement data is not selected</td>
</tr>
<tr>
<td>24</td>
<td>The spot setting dialog box is open.</td>
</tr>
<tr>
<td>30</td>
<td>Measurement failed.</td>
</tr>
<tr>
<td>100</td>
<td>Error in exposure range setting.</td>
</tr>
<tr>
<td>110</td>
<td>Error in frequency setting.</td>
</tr>
<tr>
<td>120</td>
<td>Error in lens type setting.</td>
</tr>
<tr>
<td>121</td>
<td>Error in lens position setting.</td>
</tr>
<tr>
<td>122</td>
<td>Error in exposure table setting.</td>
</tr>
<tr>
<td>130</td>
<td>Error in additional setting.</td>
</tr>
<tr>
<td>140</td>
<td>Error in user calibration coefficients.</td>
</tr>
<tr>
<td>150</td>
<td>Error in level for lower limit setting.</td>
</tr>
<tr>
<td>151</td>
<td>The setting value of the X/Y/Z individual measurement is incorrect.</td>
</tr>
<tr>
<td>152</td>
<td>The smear correction setting is incorrect.</td>
</tr>
<tr>
<td>160</td>
<td>Error in selected spot number.</td>
</tr>
<tr>
<td>170</td>
<td>The measurement method is not correct.</td>
</tr>
<tr>
<td>171</td>
<td>Error in spot coordinates.</td>
</tr>
<tr>
<td>172</td>
<td>Error in spot’s effective pixels setting.</td>
</tr>
<tr>
<td>173</td>
<td>Error in spot’s user calibration value.</td>
</tr>
<tr>
<td>180</td>
<td>Error in effective pixels for measurement. Please contact the nearest KONICA MINOLTA authorized service facility.</td>
</tr>
<tr>
<td>181</td>
<td>The number of defective pixels has reached the warning level. Please contact the nearest KONICA MINOLTA authorized service facility.</td>
</tr>
</tbody>
</table>

Sample scripts on the VB
```vbnet
Dim Ret As Long
Ret = CA20App.GetLastError()
```
3.8 Measurement Conditions Object Commands

The GetMeasurementCondition() main object command returns a measurement conditions object. Measurement conditions objects set detailed measurement conditions.

When Using Excel or Visual Basic

1. Declare the variable representing the measurement conditions.

 Dim Condition As Object

2. Assign the measurement conditions object to ‘Condition’.

 Condition = CA20App.GetMeasurementCondition()

3. Set the measurement conditions properties.

 Condition.AutoExposure = False

4. Pass the set measurement conditions to CA-S20w.

 CA20App.SetMeasurementCondition(Condition)

5. After making the settings, execute the following statement:

 Condition = Nothing

Note

Attempts to acquire or set measurement conditions objects fail when the measurement conditions dialog is open in CA-S20w. To set measurement conditions, you must close the CA-S20w’s measurement conditions dialog.
CHAPTER 3 : AUTOMATION

3.8.1 Measurement Conditions Commands

3.8.1.1 Setting/Acquiring Lens Types

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>LensType As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sets or acquires the lens type. The types that can be set are:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lens No.</th>
<th>Lens type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Standard</td>
</tr>
<tr>
<td>1</td>
<td>Wide-angle</td>
</tr>
<tr>
<td>2</td>
<td>Telephoto</td>
</tr>
<tr>
<td>3</td>
<td>Macro 1 (low magnification)</td>
</tr>
<tr>
<td>4</td>
<td>Macro 2 (high magnification)</td>
</tr>
</tbody>
</table>

To check whether a particular lens type is supported, call the IsAvailableLens method and check the return value. The SetMeasurementCondition method fails if you specify an unsupported lens number.

Sample scripts on the VB
```
Dim Ret As Boolean
For i = 0 to 5
    Ret = Condition.IsAvailableLens(i)
    If (Ret = false) Then
        MsgBox ("Can not use this Lens number" + CStr(i))
    End If
Next i
```

3.8.1.2 Setting/Acquiring Lens Positions

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>LensPosition As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sets or acquires the lens position. The supported lens positions vary according to the set lens type. To check whether a particular lens position number is supported, call the GetLensPositionCount method, and check the supported lens position count. The SetMeasurementCondition method fails if you specify an unsupported lens position number. The SetMeasurementCondition method fails if you specify an unsupported lens number.</td>
</tr>
</tbody>
</table>

Sample scripts on the VB
```
Condition.LensPosition = 1
```

3.8.1.3 Checking Whether a Lens is Supported

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>IsAvailableLens(Type As Long) As Boolean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>Type</td>
</tr>
<tr>
<td></td>
<td>Specifies the lens number.</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>False</td>
</tr>
<tr>
<td></td>
<td>Unsupported</td>
</tr>
</tbody>
</table>

Description Checks whether the specified lens number is supported. Lens numbers can be checked using the numbers set in "4.8.1.1 Setting/Acquiring Lens Types".

Sample scripts on the VB
```
Dim Ret As Boolean
Dim i As Integer
For i = 0 to 5
    Ret = Condition.IsAvailableLens(i)
    If (Ret = false) Then
        MsgBox ("Can not use this Lens number" + CStr(i))
    End If
Next i
```
3.8.1.4 Acquiring Supported Lens Position Count

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>GetLensPositionCount() As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>None</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>Returns the number of supported lens positions.</td>
</tr>
</tbody>
</table>

Description

Acquires the number of lens positions set in the measuring instrument.

The supported position numbers for each lens type are shown below.

<table>
<thead>
<tr>
<th>Lens position No.</th>
<th>Standard Width-angle</th>
<th>Telephoto Macro 1 (low magnification)</th>
<th>Telephoto Macro 2 (high magnification)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.25m</td>
<td>0.2m</td>
<td>0.9m</td>
</tr>
<tr>
<td>1</td>
<td>0.25m + 1/2</td>
<td>0.24m</td>
<td>0.9m + 1/2</td>
</tr>
<tr>
<td>2</td>
<td>0.3m</td>
<td>0.3m</td>
<td>1m</td>
</tr>
<tr>
<td>3</td>
<td>0.3m + 1/2</td>
<td>0.5m</td>
<td>1m + 1/3</td>
</tr>
<tr>
<td>4</td>
<td>0.5m</td>
<td>1m</td>
<td>1m + 2/3</td>
</tr>
<tr>
<td>5</td>
<td>0.5m + 1/2</td>
<td>Inf</td>
<td>1.5m</td>
</tr>
<tr>
<td>6</td>
<td>1m</td>
<td>-</td>
<td>1.5m + 1/3</td>
</tr>
<tr>
<td>7</td>
<td>1m + 1/2</td>
<td>-</td>
<td>1.5m + 2/3</td>
</tr>
<tr>
<td>8</td>
<td>Inf</td>
<td>-</td>
<td>3m</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>3m + 1/3</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>3m + 2/3</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>Inf</td>
</tr>
</tbody>
</table>

Sample scripts on the VB

```
Dim LensPositionCount As Long
LensPositionCount = Condition.GetLensPositionCount()
```

3.8.1.5 Setting/Acquiring Auto Exposure ON/OFF Setting

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>AutoExposure As Boolean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sets or acquires the auto exposure ON/OFF setting. When set to “True”, the exposure positions enabling measurement are automatically adjusted to the optimum exposure amount. When set to “False”, the shutter speed table position set in the ShutterTableIndex properties is used.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>Condition.AutoExposure = True</td>
</tr>
</tbody>
</table>

3.8.1.6 Setting/Acquiring Measurement Method

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>MeasurementType As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sets or acquires the measurement method. The supported parameters are shown below.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement method No.</th>
<th>Measurement method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Standard measurement</td>
</tr>
<tr>
<td>1</td>
<td>Synchronized measurement</td>
</tr>
</tbody>
</table>

Sample scripts on the VB

```
Condition.MeasurementType = 1
```

Measurement Condition Commands

Lens position No.

0: 0.25m
1: 0.25m + 1/2
2: 0.3m
3: 0.3m + 1/2
4: 0.5m
5: 0.5m + 1/2
6: 1m
7: 1m + 1/2
8: Inf
9: -
10: -
11: -

Measurement method No.

0: Standard measurement
1: Synchronized measurement
3.8.1.7 Setting/Acquiring Synchronized Measurement Frequency

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>SyncValue As Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sets or acquires the frequency used during synchronized measurement. When setting a frequency, specify a value between 4.0000 and 2000.0000. You can set values with up to 4 decimal places. The 5th decimal place is discarded. The SetMeasurementCondition method fails if you specify an unsupported lens value.</td>
</tr>
</tbody>
</table>

Sample scripts on the VB
```
Condition.SyncValue = 60.0000
```

3.8.1.8 Setting/Acquiring Exposure Table Positions

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>ExposureTableIndex As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sets or acquires the exposure table position. The exposure table varies according to the synchronization frequency when synchronized measurement has been turned ON. To check whether a particular number can be set as an exposure table position, call the GetExposureTableCount method and check the supported exposure table position count. The SetMeasurementCondition method fails if you specify an unsupported lens number.</td>
</tr>
</tbody>
</table>

Sample scripts on the VB
```
Condition.ExposureTableIndex = 1
```

3.8.1.9 Acquiring Supported Exposure Table Position Count

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>GetExposureTableCount() As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>None</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>Returns the number of supported exposure table positions.</td>
</tr>
<tr>
<td>Description</td>
<td>Acquires the number of supported exposure table positions. The table below shows the exposure table count for each supported table position number under standard measurement conditions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exposure table position No.</th>
<th>Standard measurement</th>
<th>Synchronized measurement (60 Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/2048 ND1.5% normal</td>
<td>1/30.0000 ND1.5% normal</td>
</tr>
<tr>
<td>1</td>
<td>1/1024 ND1.5% normal</td>
<td>1/30.0000 ND3% normal</td>
</tr>
<tr>
<td>2</td>
<td>1/512 ND1.5% normal</td>
<td>1/30.0000 ND6% normal</td>
</tr>
<tr>
<td>3</td>
<td>1/256 ND1.5% normal</td>
<td>1/30.0000 ND12.5% normal</td>
</tr>
<tr>
<td>4</td>
<td>1/128 ND1.5% normal</td>
<td>1/30.0000 ND25% normal</td>
</tr>
<tr>
<td>5</td>
<td>1/64 ND1.5% normal</td>
<td>1/30.0000 ND50% normal</td>
</tr>
<tr>
<td>6</td>
<td>1/64 ND3% normal</td>
<td>1/30.0000 ND100% normal</td>
</tr>
<tr>
<td>7</td>
<td>1/64 ND6% normal</td>
<td>2/30.0000 ND100% normal</td>
</tr>
<tr>
<td>8</td>
<td>1/64 ND12.5% normal</td>
<td>4/30.0000 ND100% normal</td>
</tr>
<tr>
<td>9</td>
<td>1/64 ND25% normal</td>
<td>8/30.0000 ND100% normal</td>
</tr>
<tr>
<td>10</td>
<td>1/64 ND50% normal</td>
<td>16/30.0000 ND100% normal</td>
</tr>
<tr>
<td>11</td>
<td>1/64 ND100% normal</td>
<td>16/30.0000 ND100% mid</td>
</tr>
<tr>
<td>12</td>
<td>1/32 ND100% normal</td>
<td>16/30.0000 ND100% high</td>
</tr>
<tr>
<td>13</td>
<td>1/16 ND100% normal</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1/8 ND100% normal</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1/4 ND100% normal</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1/2 ND100% normal</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1/1 ND100% normal</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1/1 ND100% mid</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1/1 ND100% high</td>
<td></td>
</tr>
</tbody>
</table>

<CAUTION>
The exposure table position numbers supported for synchronized measurement vary according to the synchronization frequency. Check actual CA-S20w operation and write down the displayed exposure table values before setting exposure table position numbers.

Sample scripts on the VB
```
Dim LensTypeCount As Long
LensTypeCount = Condition.GetLensTypeCount()
```
3.8.1.10 Setting/Acquiring ‘Additional’ Values

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>Additional As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>None</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>Returns the number of supported exposure table positions.</td>
</tr>
<tr>
<td>Description</td>
<td>Sets the ‘Additional’ value. The supported parameters are shown below.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>‘Additional’ No.</th>
<th>‘Additional’ value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>One shot (1)</td>
</tr>
<tr>
<td>1</td>
<td>Ultra Fast (4)</td>
</tr>
<tr>
<td>2</td>
<td>Fast (16)</td>
</tr>
<tr>
<td>3</td>
<td>Normal (64)</td>
</tr>
<tr>
<td>4</td>
<td>High acc (256)</td>
</tr>
</tbody>
</table>

The SetMeasurementCondition method fails if you specify an unsupported lens number.

Sample scripts on the VB

```
Condition.Additional = 1
```

3.8.1.11 Setting/Acquiring ‘Level for Lower Limit’ Values

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>LowerLevel As Single</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sets or acquires the ‘Level for Lower Limit’ value. When setting a value, specify a value between 0.00 and 100.00. You can set values with up to 2 decimal places. The 3rd decimal place is discarded. For some settings, the second decimal digit may vary by 1 digit. The SetMeasurementCondition method fails if you specify an unsupported lens number.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>Condition.LowerLevel = 0.500</td>
</tr>
</tbody>
</table>

3.8.1.12 Setting/Acquiring Resolution

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>Resolution As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sets or acquires the resolution. The parameters are shown below.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resolution No.</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>490*490</td>
</tr>
<tr>
<td>1</td>
<td>980*980</td>
</tr>
<tr>
<td>2</td>
<td>196*196</td>
</tr>
</tbody>
</table>

The SetMeasurementCondition method fails if you specify an unsupported lens number.

<CAUTION>
The resolution can only be set when creating a new document. If the document contains data, the resolution can’t be changed.

Sample scripts on the VB

```
Condition.Resolution = 2
```
3.8.1.13 Setting/Acquiring Auto Exposure Range

Method name on the VB: X0 As Long, Y0 As Long, X1 As Long, Y1 As Long

Description
Sets or acquires the auto exposure range.

X0: Left coordinate
Y0: Top coordinate
X1: Right coordinate
Y1: Bottom coordinate

You must set the coordinates so that X0 < X1, and Y0 < Y1. Set the coordinates carefully, since the supported coordinate range varies according to the set resolution.

<table>
<thead>
<tr>
<th>Resolution ('Resolution' parameter value)</th>
<th>Supported coordinate range</th>
</tr>
</thead>
<tbody>
<tr>
<td>X0, Y0</td>
<td>X1, Y1</td>
</tr>
<tr>
<td>490*490 (0)</td>
<td>0 to 488, 1 to 489</td>
</tr>
<tr>
<td>980*980 (1)</td>
<td>0 to 978, 1 to 979</td>
</tr>
<tr>
<td>196*196 (2)</td>
<td>0 to 194, 1 to 195</td>
</tr>
</tbody>
</table>

The SetMeasurementCondition method fails if you specify an unsupported lens number. The SetMeasurementCondition method fails if X1 - X0 or Y1 - Y0 is less than 3 (minimum size is less than 3).

When the resolution is set to 980 and the show measurement window command is executed after the execution of SetMeasurementCondition, the automatic exposure range displayed by CA-S20w may change by one dot.

Sample scripts on the VB:
Condition.X0 = 0
Condition.Y0 = 0
If Condition.Resolution = 1 Then
 Resolution: 490 × 490
 Condition.X1 = 489
 Condition.Y1 = 489
Else if Condition.Resolution = 2 Then
 Resolution: 980 × 980
 Condition.X1 = 979
 Condition.Y1 = 979
Else
 Resolution: 196 × 196
 Condition.X1 = 195
 Condition.Y1 = 195
End if

3.8.1.14 Setting/Acquiring the X/Y/Z Individual Measurement Options

Method name on the VB: FilterMeasure as Boolean

Description
Sets or acquires the ON/OFF status of the X/Y/Z individual measurement.

When True is set, the X/Y/Z individual measurement is performed. The filter number to be measured is specified with FilterIndex.

When False is set, the normal X/Y/Z measurement is performed.

Sample scripts on the VB:
Condition.FilterMeasure = True

3.8.1.15 Setting/Acquiring the X/Y/Z Filter Number.

Method name on the VB: FilterIndex As Long

Description
Sets or acquires the X/Y/Z filter number.

When the FilterMeasure property is set to True, this filter number is enabled. The parameters which can be set/acquired are as follows:

<table>
<thead>
<tr>
<th>No.</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
</tr>
</tbody>
</table>

The SetMeasurementCondition method fails if you specify an unsupported lens number.

Sample scripts on the VB:
Condition.FilterIndex = 0 'Performs Y measurement.'
3.8.1.16 Setting/Acquiring the Smear Correction

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>SmearIndex As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sets or acquires the smear correction number. The parameters which can be set/acquired are as follows:</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
</tr>
<tr>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>1</td>
<td>Simple</td>
</tr>
<tr>
<td>2</td>
<td>Linear</td>
</tr>
</tbody>
</table>

- The SetMeasurementCondition method fails if you specify an unsupported lens number.

Sample scripts on the VB

```vb
Condition.SmearIndex = 2 'Performs approximate correction.
```

3.8.1.17 Setting/Acquiring Auto Naming Function ON/OFF Setting

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>AutoNaming As Boolean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sets or acquires the auto naming function’s ON/OFF setting. If 'True' is set, auto naming is applied to the measurement data name. If 'False' is set, auto naming is not applied to the measurement data name.</td>
</tr>
</tbody>
</table>

Sample scripts on the VB

```vb
Condition.AutoNaming = True
```

Note

The AutoNumber function used with the CA-S20w Ver.1.1 or earlier has been renamed to the AutoNaming function described above. The operation is the same and the AutoNumber function can still be used with this version.

3.8.1.18 Setting Names

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>SetName(strName As String, strComment) As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>SetName
- Specifies the name to set for the measurement data. You must specify a name.
- strComment
- Specifies the comment to set for the measurement data. A null string can be specified.</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>The command fails when no name is specified or a character string longer than the effective length is specified.</td>
</tr>
<tr>
<td>Description</td>
<td>When this function is called, the auto number function is turned OFF, and the set character string is carried over to the next measurement data. To set a different name for each set of measurement data, you must set the names before measurement. If the name is not changed, the same character string will be set as the data name of each set of data.</td>
</tr>
</tbody>
</table>

Sample scripts on the VB

```vb
Dim strName As String
Dim strComment As String
strName = "Display1"
strComment = ""
Ret = Condition.SetName(strName, strComment)
```
3.8.2 User Calibration Commands

3.8.2.1 Acquiring the User Calibration Coefficient

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>GetUserCalibrationData() As Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>None</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>Returns a user calibration coefficient object. For more information on user calibration coefficients, see "4.9 User Calibration Coefficient Object Commands".</td>
</tr>
<tr>
<td>Description</td>
<td>Acquires a user calibration coefficient object.</td>
</tr>
</tbody>
</table>
| Sample scripts on the VB| Dim UserCalibData As Object
UserCalibData = Condition.GetUserCalibData() |

3.8.2.2 Acquiring User Calibration Coefficients From Files

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>GetUserCalibrationDataAsFile(FileName As String) As Object</th>
</tr>
</thead>
</table>
| Argument on the VB | FileName
Specifies the user calibration coefficient file. You must specify a full-path file name. |
| Return value on the VB| Returns the user calibration coefficient object to which the settings read from the file have been applied. For more information on user calibration coefficient objects, see "4.9 User Calibration Coefficient Object Commands". |
| Description | Acquires a user calibration coefficient object from a file.
Just executing this method does not apply the user calibration coefficients to CA-S20w. To set the user calibration coefficients read from the file in CA-S20w, you must execute the SetUserCalibrationData method, which sets the user calibration coefficient object.
When a character "\" for indicating the directory is required, repeat it twice. |
| Sample scripts on the VB| Dim UserCalibData As Object
Dim strName As String
strName = "C:\Documents and Setting\CAS20w\UserCalib1.uca"
UserCalibData = Condition.GetUserCalibrationDataAsFile(strName) |

3.8.2.3 Setting User Calibration Coefficients

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>SetUserCalibrationData(UserCalibrationData As Object) As Long</th>
</tr>
</thead>
</table>
| Argument on the VB | UserCalibData
Specifies the object that will set the user calibration coefficients. You must specify a measurement conditions object acquired by the GetUserCalibrationData method or GetUserCalibrationDataAsFile method.
For more information on UserCalibration objects, see "4.9 User Calibration Coefficient Object Commands". |
| Return value on the VB| When the command was executed successfully: 0
When command execution failed: -1 |
| Description | Sets the user calibration coefficients.
This command fails when the PC is not connected to an instrument.
The command fails when no active document exists or no document is opened. |
| Sample scripts on the VB| Dim Ret As Long
Dim UserCalibData As Object
UserCalibData = Condition.GetUserCalibrationData()
Ret = Condition.SetUserCalibrationData(UserCalibData) |
3.8.3 Spot Commands

3.8.3.1 Acquiring Default Spot Setting Conditions

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>GetDefaultSpotCondition() As Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>None</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>Returns a spot setting conditions object. For more information on spot setting conditions objects, see “4.10 Spot Setting Conditions Object Commands”.</td>
</tr>
<tr>
<td>Description</td>
<td>Acquires the spot setting conditions object set in the specified measurement data in the currently active document. The command fails when no active document exists or no document is opened.</td>
</tr>
</tbody>
</table>
| Sample scripts on the VB | Dim SpotCond As Object
SpotCond = Condition.GetDefaultSpotCondition() |

3.8.3.2 Acquiring Default Spot Setting Conditions From Files

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>GetDefaultSpotConditionAsFile (FileName As String) As Object</th>
</tr>
</thead>
</table>
| Argument on the VB | FileName
Specifies the file name. You must specify a file name. |
| Return value on the VB| Returns the spot setting conditions object that applies the settings read from the file. For more information on spot setting conditions objects, see “4.10 Spot Setting Conditions Object Commands”. |
| Description | Acquires a spot setting conditions object from a file. Just executing this method does not apply the spot setting conditions to CA-S20w. To set spot setting conditions read from a file to CA-S20w, you must execute the SetSpotCondition method, which sets the spot settings conditions object. When character “\” for indicating the directory is required, repeat it twice. |
| Sample scripts on the VB | Dim SpotCond As Object
Dim strName As String
strName = “C:\Documents and Setting\CAS20w\Spot1.spt”
SpotCond = Condition.GetDefaultSpotConditionAsFile (strName) |

3.8.3.3 Setting Default Spot Setting Conditions

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>SetDefaultSpotCondition (SpotCond As Object) As Long</th>
</tr>
</thead>
</table>
| Argument on the VB | SpotCond
Specifies the object that will set the spot setting conditions. You must specify a spot setting conditions object acquired by the GetSpotCondition method or GetSpotConditionAsFile method.
For more information on SpotCond objects, see “4.10 Spot Setting Conditions Object Commands”. |
| Return value on the VB| When the command was executed successfully : 0
When command execution failed : -1 |
| Description | Sets the spot setting conditions. This command fails when the PC is not connected to an instrument. The command fails when no active document exists or no document is opened. |
| Sample scripts on the VB | Dim Ret As Long
Dim SpotCond As Object
SpotCond = Condition.GetSpotCondition()
Ret = Condition.SetDefaultSpotCondition(SpotCond) |
3.9 User Calibration Coefficient Object Commands

GetMeasurementConditions() returns a user calibration coefficient object from an acquired measurement conditions object. User calibration coefficient objects set detailed user calibration coefficient settings.

When Using Excel or Visual Basic

1. Declare the variable representing the measurement conditions.
   ```vba
   Dim Condition As Object
   ```

2. Declare the variable representing the user calibration coefficients.
   ```vba
   Dim UserCalibData As Object
   ```

3. Assign the measurement conditions object to its value.
   ```vba
   Condition = CA20App.GetMeasurementCondition()
   ```

4. Assign the user calibration coefficient object to its value.
   ```vba
   UserCalibData = Condition.GetUserCalibrationData()
   ```

5. Set the calibration coefficient type.
   ```vba
   UserCalibData.CalibrationType = 2
   ```

6. Perform user calibration on the white luminance.
   ```vba
   UserCalibData.WLv_before = 50.32
   UserCalibData.WLv_after = 60.28
   ```

7. Pass the set user calibration coefficients to CA-S20w.
   ```vba
   Condition.SetUserCalibrationData(UserCalibData)
   ```

8. After making the settings, execute the following statement:
   ```vba
   UserCalibData = Nothing
   Condition = Nothing
   ```
3.9.1.1 Setting/Acquiring User Calibration Coefficient Types

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>CalibrationType as Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sets or acquires the user calibration type. The parameters are shown below.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calibration No.</th>
<th>Calibration type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>1</td>
<td>RGB matrix calibration</td>
</tr>
<tr>
<td>2</td>
<td>One-point calibration</td>
</tr>
<tr>
<td>3</td>
<td>WRGB matrix calibration</td>
</tr>
</tbody>
</table>

The SetUserCalibrationData method fails if an unsupported number is specified.

Sample scripts on the VB

```
UserCalibData.CalibrationType = 1
```

3.9.1.2 Setting/Acquiring User Calibration Coefficients

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>RLv_before As Double - Wy_after As Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sets or acquires the user calibration coefficients.</td>
</tr>
<tr>
<td>List of supported properties</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLv_before</td>
<td>Red Lv value before calibration</td>
</tr>
<tr>
<td>RLv_after</td>
<td>Red Lv value after calibration</td>
</tr>
<tr>
<td>Rx_before</td>
<td>Red x value before calibration</td>
</tr>
<tr>
<td>Rx_after</td>
<td>Red x value after calibration</td>
</tr>
<tr>
<td>Ry_before</td>
<td>Red y value before calibration</td>
</tr>
<tr>
<td>Ry_after</td>
<td>Red y value after calibration</td>
</tr>
<tr>
<td>GLv_before</td>
<td>Green Lv value before calibration</td>
</tr>
<tr>
<td>GLv_after</td>
<td>Green Lv value after calibration</td>
</tr>
<tr>
<td>Gx_before</td>
<td>Green x value before calibration</td>
</tr>
<tr>
<td>Gx_after</td>
<td>Green x value after calibration</td>
</tr>
<tr>
<td>Gy_before</td>
<td>Green y value before calibration</td>
</tr>
<tr>
<td>Gy_after</td>
<td>Green y value after calibration</td>
</tr>
<tr>
<td>BLv_before</td>
<td>Blue Lv value before calibration</td>
</tr>
<tr>
<td>BLv_after</td>
<td>Blue Lv value after calibration</td>
</tr>
<tr>
<td>Bx_before</td>
<td>Blue x value before calibration</td>
</tr>
<tr>
<td>Bx_after</td>
<td>Blue x value after calibration</td>
</tr>
<tr>
<td>By_before</td>
<td>Blue y value before calibration</td>
</tr>
<tr>
<td>By_after</td>
<td>Blue y value after calibration</td>
</tr>
<tr>
<td>WLv_before</td>
<td>White Lv value before calibration</td>
</tr>
<tr>
<td>WLv_after</td>
<td>White Lv value after calibration</td>
</tr>
<tr>
<td>Wx_before</td>
<td>White x value before calibration</td>
</tr>
<tr>
<td>Wx_after</td>
<td>White x value after calibration</td>
</tr>
<tr>
<td>Wy_before</td>
<td>White y value before calibration</td>
</tr>
<tr>
<td>Wy_after</td>
<td>White y value after calibration</td>
</tr>
</tbody>
</table>

The SetUserCalibrationData method fails if an unsupported value is specified.

Sample scripts on the VB

```
UserCalibData.RLv_after = 1.00
```
3.10 Spot Setting Conditions Object Commands

GetSpotCondition() returns a spot object. Spot objects can be acquired from main object commands and measurement conditions object commands. When a spot object is acquired from a main object command, the command returns the spot object set in the current data. When a spot object is acquired from a measurement conditions object command, the command returns the spot object set in the measurement conditions.

When Using Excel or Visual Basic

1. Declare the variable representing the spot object.

 Dim SpotCond As Object

2. Select the first measurement data.

 CA20App.SelectData(1)

3. Acquire the spot setting conditions object set in the first measurement data.

 SpotCond = CA20App.GetSpotCondition()

4. After making the settings, execute the following statement:

 SpotCond = Nothing
3.10.1.1 Acquiring Spot Count

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>GetSpotListCount() As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>None</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>Returns the number of spots set.</td>
</tr>
<tr>
<td>Description</td>
<td>Returns the number of spots set in the currently active measurement data, when an object has been acquired from a main object command. Returns 0 when no spot has been set. The command fails if no measurement data exists. Returns the number of spots set in the measurement conditions, when an object has been acquired from a measurement conditions object command. Returns 0 when no spot has been set.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>Dim Count As Long</td>
</tr>
<tr>
<td></td>
<td>Count = SpotCond.GetSpotCount()</td>
</tr>
</tbody>
</table>

3.10.1.2 Creating Spots

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>CreateSpot(Left As Long, Top As Long, Right As Long, Bottom As Long, Type As Long, Flag1 As Variant, Flag2 As Varian) As Long</th>
</tr>
</thead>
</table>
| Argument on the VB | Left
 Spot left coordinate
 Top
 Spot top coordinate
 Right
 Spot right coordinate
 Bottom
 Spot bottom coordinate
 Type
 Spot shape: 0 = Circle; 1 = Rectangle
 Flag1
 Flag2
 ‘Flag1’ and ‘Flag2’ are arguments for future use (always specify 0). |
| Return value on the VB | When the command was executed successfully : 0
 When command execution failed : -1 |
| Description | Adds a new spot. Spots are numbered starting from 1, in the order added.
 When new spots are added to a spot setting conditions object with spots already set, the new spots are numbered starting from the last number.
 Be sure to set the values so that the relationships of Left < Right and Top < Bottom will hold. Determine the values carefully because available coordinates vary depending on the specified resolution.
 Resolution ('Resolution' parameter value)
 Supported coordinate range
<table>
<thead>
<tr>
<th>Resolution</th>
<th>Left, Top</th>
<th>Right, Bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td>490*490 (0)</td>
<td>0 to 486</td>
<td>3 to 489</td>
</tr>
<tr>
<td>980*980 (1)</td>
<td>0 to 976</td>
<td>3 to 979</td>
</tr>
<tr>
<td>196*196 (2)</td>
<td>0 to 192</td>
<td>3 to 195</td>
</tr>
</tbody>
</table>

- If an invalid number is specified, CreateSpot fails.
- If the subtraction result of Right - Left or Bottom - Top is less than 3 (i.e. if the smallest size is less than 3), the CreateSpot method fails.
- When the show measurement window command is executed after the execution of CreateSpot, the spot size to be displayed may change by one dot. You can set overlapping coordinates.
- If you specify a circular spot with different row (Right-Left) and column (Bottom-Top) dimensions, the spot is automatically set again using the shorter of the two dimensions (starting from the top-left).
3.10.3Deleting Spots

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>DeleteSpot(SpotNum As Long) As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>SpotNum</td>
</tr>
<tr>
<td></td>
<td>Number of spot to delete</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>When the command was executed successfully : 0</td>
</tr>
<tr>
<td></td>
<td>When command execution failed : -1</td>
</tr>
<tr>
<td>Description</td>
<td>Deletes the spot with the specified number. When a spot is deleted, the numbers of the remaining spots are reassigned. The method fails if the specified number is nonexistent.</td>
</tr>
</tbody>
</table>
| Sample scripts on the VB| Dim Ret As Long
| | Dim SpotNum As Long
| | SpotNum = 1 'Specifies the first spot number.
| | Ret = SpotCond.DeleteSpot(SpotNum) 'Deletes the first spot. |

3.10.4Acquiring Spot Settings

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>GetSpotSetting(SpotNum As Long) As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>SpotNum</td>
</tr>
<tr>
<td></td>
<td>Number of spot to acquire</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>Returns a spot object. For more information on spot objects, see “4.8 Measurement Conditions Object Commands”. There must be a spot in the spot list for the specified spot number. ‘Nothing’ is returned as the spot object if a nonexistent number is specified.</td>
</tr>
<tr>
<td>Description</td>
<td>Acquires the element data for an individual spot. There must be a spot in the spot list for the specified spot number ‘Nothing’ is returned as the spot object if a nonexistent number is specified.</td>
</tr>
</tbody>
</table>
| Sample scripts on the VB| Dim Ret As Long
| | Dim SpotNum As Long
| | Dim SpotSetting As Object
| | SpotNum = 1 'Specifies the first spot number.
| | SpotSetting = SpotCond.GetSpotSetting(SpotNum) Acquires the information of the first spot. |
3.10.1.5 Setting Spot Settings

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>SetSpotSetting(SpotNum As Long, SpotSetting As Object) As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument on the VB</td>
<td>SpotNum
Number of spot to set
SpotSetting
Specifies the object that will set the spot settings. You must specify a spot object acquired by the GetSpotSetting method.
For more information on SpotSetting objects, see “4.11 Spot Object Commands”.</td>
</tr>
<tr>
<td>Return value on the VB</td>
<td>Returns a spot object. For more information on spot objects, see “4.11 Spot Object Commands”. There must be a spot in the spot list for the specified spot number ‘Nothing’ is returned as the spot object if a nonexistent number is specified.</td>
</tr>
<tr>
<td>Description</td>
<td>Sets the spot setting. There must be a spot in the spot list for the specified spot number ‘Nothing’ is returned as the spot object if a nonexistent number is specified.</td>
</tr>
<tr>
<td>Sample scripts on the VB</td>
<td>Dim Ret As Long
Dim SpotNum As Long
Dim SpotSetting As Object
SpotNum = 1 'Specifies the first spot number.
SpotSetting = SpotCond.GetSpotSetting(SpotNum) 'Acquires the information of the first spot.
Ret = SpotCond.GetSpotSetting(SpotNum, SpotSetting) 'Sets the information of the first spot.</td>
</tr>
</tbody>
</table>
3.11 Spot Object Commands

GetSpotSetting(SpotNum As Long) returns spot information from an acquired spot object. Spot objects set detailed spot settings.

When Using Excel or Visual Basic

1. Declare the variable representing the spot setting conditions.

   ```vba
   Dim SpotCond As Object
   ```

2. Declare variables representing each spot setting.

   ```vba
   Dim SpotSetting As Object
   ```

3. Assign the spot setting conditions object to its value.

   ```vba
   SpotCond = CA20App.GetSpotCondition()
   ```

4. Assign the spot object to its value.

   ```vba
   SpotSetting = SpotCond.GetSpotSetting()
   ```

5. Change the spot range.

   ```vba
   SpotSetting.X0 = 150
   SpotSetting.Y0 = 150
   SpotSetting.X1 = 200
   SpotSetting.Y1 = 200
   ```

6. Pass the set spot object to CA-S20w.

   ```vba
   SpotCond.SetSpotSetting(SpotSetting)
   ```

7. After making the settings, execute the following statement:

   ```vba
   SpotSetting = Nothing
   SpotCond = Nothing
   ```
3.11.1.1 Setting/Acquiring Spot Sizes

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left As Long, Top As Long, Right As Long, Bottom As Long</td>
<td>Sets or acquires the auto exposure range.</td>
</tr>
</tbody>
</table>

Left: Left coordinate
Top: Top coordinate
Right: Right coordinate
Bottom: Bottom coordinate

You must set the coordinates so that Left < Right, and Top < Bottom. Set the coordinates carefully, since the supported coordinate range varies according to the set resolution.

<table>
<thead>
<tr>
<th>Resolution (‘Resolution’ parameter value)</th>
<th>Supported coordinate range</th>
</tr>
</thead>
<tbody>
<tr>
<td>490*490 (0)</td>
<td>0 to 488</td>
</tr>
<tr>
<td>980*980 (1)</td>
<td>0 to 978</td>
</tr>
<tr>
<td>196*196 (2)</td>
<td>0 to 194</td>
</tr>
</tbody>
</table>

The SetSpotSetting method fails when an unsupported number is specified.
The SetSpotSetting method fails if Right - Left or Bottom - Top is less than 3 (minimum size is less than 3).
Executing the measurement window display command after executing SetSpotSetting may change the displayed spot size by one dot.

3.11.2 Setting/Acquiring the spot type

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>Type As Long</th>
</tr>
</thead>
</table>

Sets or acquires whether the spot is a circle or a rectangle.

<table>
<thead>
<tr>
<th>No.</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Circle</td>
</tr>
<tr>
<td>1</td>
<td>Rectangle</td>
</tr>
</tbody>
</table>

The SetSpotSetting method fails when an unsupported number is specified.

3.11.3 Setting/Acquiring Ignore Number of Pixels For Spot Calculation

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>IgnorePixelLevel As Double</th>
</tr>
</thead>
</table>

Sets or acquires the ratio to set for the ignore number of pixels.
When setting this parameter, set a value between 0.00 and 100.00.
The SetSpotSetting method fails if an unsupported value is specified.

Sample scripts on the VB
`SpotSetting.IgnorePixelLevel = 100.0`

Note
The `EffectivePixelLevel` function used with the CA-S20w Ver.1.1 or earlier has been changed to the `IgnorePixelLevel` function described above. Although the `EffectivePixelLevel` function can still be used with this version, you must use it carefully because the operation is different. If you specified 75, for example, for the `EffectivePixelLevel` function with the CA-S20w Ver.1.1 or earlier, you must specify 25 (a value obtained by subtracting 75 from 100) for the `IgnorePixelLevel` function or `EffectivePixelLevel` function with this version.
3.11.1.4 Setting/Acquiring Color Used to Calculate Ignore Number of Spot Pixels

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>IgnorePixelColor As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sets or acquires the color value to set for the ignore number of pixels.</td>
</tr>
<tr>
<td></td>
<td>Color value No.</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Note: The EffectivePixelColor function used with the CA-S20w Ver.1.1 or earlier has been renamed to the IgnorePixelColor function described above. The operation is the same and the EffectivePixelColor function can still be used with this version.

Sample scripts on the VB: `SpotSetting.IgnorePixelColor = 0`

3.11.1.5 Setting/Acquiring User Calibration Coefficient Type Set in Spots

<table>
<thead>
<tr>
<th>Method name on the VB</th>
<th>CalibrationType As Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sets or acquires the user calibration type. The parameters are shown below.</td>
</tr>
<tr>
<td></td>
<td>Calibration No.</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Note: The SetMeasurementCondition method fails if you specify an unsupported lens number.

Sample scripts on the VB: `SpotSetting.CalibrationType = 1`
3.11.1.6 Setting/Acquiring User Calibration Coefficients Set in Spots

Method name on the VB: `RLV_before As Double - WY_after As Double`

Description: Sets or acquires the user calibration coefficients.

<table>
<thead>
<tr>
<th>Property name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>RLV_before</code></td>
<td>Red Lv value before calibration</td>
</tr>
<tr>
<td><code>RLV_after</code></td>
<td>Red Lv value after calibration</td>
</tr>
<tr>
<td><code>Rx_before</code></td>
<td>Red x value before calibration</td>
</tr>
<tr>
<td><code>Rx_after</code></td>
<td>Red x value after calibration</td>
</tr>
<tr>
<td><code>Ry_before</code></td>
<td>Red y value before calibration</td>
</tr>
<tr>
<td><code>Ry_after</code></td>
<td>Red y value after calibration</td>
</tr>
<tr>
<td><code>GLV_before</code></td>
<td>Green Lv value before calibration</td>
</tr>
<tr>
<td><code>GLV_after</code></td>
<td>Green Lv value after calibration</td>
</tr>
<tr>
<td><code>Gx_before</code></td>
<td>Green x value before calibration</td>
</tr>
<tr>
<td><code>Gx_after</code></td>
<td>Green x value after calibration</td>
</tr>
<tr>
<td><code>Gy_before</code></td>
<td>Green y value before calibration</td>
</tr>
<tr>
<td><code>Gy_after</code></td>
<td>Green y value after calibration</td>
</tr>
<tr>
<td><code>BLV_before</code></td>
<td>Blue Lv value before calibration</td>
</tr>
<tr>
<td><code>BLV_after</code></td>
<td>Blue Lv value after calibration</td>
</tr>
<tr>
<td><code>Bx_before</code></td>
<td>Blue x value before calibration</td>
</tr>
<tr>
<td><code>Bx_after</code></td>
<td>Blue x value after calibration</td>
</tr>
<tr>
<td><code>By_before</code></td>
<td>Blue y value before calibration</td>
</tr>
<tr>
<td><code>By_after</code></td>
<td>Blue y value after calibration</td>
</tr>
<tr>
<td><code>WLV_before</code></td>
<td>White Lv value before calibration</td>
</tr>
<tr>
<td><code>WLV_after</code></td>
<td>White Lv value after calibration</td>
</tr>
<tr>
<td><code>Wx_before</code></td>
<td>White x value before calibration</td>
</tr>
<tr>
<td><code>Wx_after</code></td>
<td>White x value after calibration</td>
</tr>
<tr>
<td><code>Wy_before</code></td>
<td>White y value before calibration</td>
</tr>
<tr>
<td><code>Wy_after</code></td>
<td>White y value after calibration</td>
</tr>
</tbody>
</table>

The `SetUserCalibrationData` method fails if an unsupported value is specified.

Sample scripts on the VB: `UserCalibData.RLV_after = 1.00`
CHAPTER 4
APPENDIX

4.1 Self Diagnosis ... 172
 4.1.1 Performing Self Diagnosis .. 172
 4.1.2 Performing Self Diagnosis at a later time ... 174
 4.1.3 When the CA-2500/CA-2000 is used from several PCs 174
 4.1.4 When the CA-2500/CA-2000 is controlled by the automatic function ... 175
4.2 Index .. 176
4.3 Automation Commands List ... 179
4.1 Self Diagnosis

When you start measurement with the CA-2500/CA-2000 using the automatic exposure to measure a target with low luminance, the measurement may fail in some rare cases because the optimal exposure position cannot be detected. When this phenomenon occurs, you can perform Self Diagnosis and prevent the measurement failure.

4.1.1 Performing Self Diagnosis

The Self Diagnosis dialog box appears when you start the CA-S20w for the first time after installation and connect it to the CA-2500/CA-2000.

Procedure

1. To start Self Diagnosis, click the ‘Run’ button.

Then the following dialog box appears.
2. To perform Self Diagnosis, attach the hood cap as shown in the picture. Click the OK button.

Self Diagnosis will be performed. This Self Diagnosis will take about 5 minutes. During Self Diagnosis, the following dialog box appears to indicate the progress.

To stop the diagnosis, click the Cancel button.
When Self Diagnosis finishes, the following dialog box appears.

3. This shows that Self Diagnosis was completed successfully. Click the Close button to finish the diagnosis.
4.1.2 Performing Self Diagnosis at a later time

Procedure

1. Select Instrument - Self Diagnosis from the menu bar of the CA-S20w.

The Self Diagnosis dialog box appears.

In addition to the operation above, a message to go to the Self Diagnosis dialog box appears automatically when the automatic exposure fails.

Tip

The automatic exposure may fail due to various causes. Since performing Self Diagnosis may prevent the failure, it is recommended to click OK to start Self Diagnosis.

If the automatic exposure still fails even after the diagnosis, the measurement target may not be stable. In such a case, use the manual exposure for the measurement.

4.1.3 When the CA-2500/CA-2000 is used from several PCs

When the CA-2500/CA-2000 is controlled from two or more PCs, the automatic exposure may fail during a measurement with a PC for which Self Diagnosis has not been performed. Be sure to check that Self Diagnosis has been performed for all connected PCs.

There are the following two ways to perform Self Diagnosis when the CA-2500/CA-2000 is used from two or more PCs. Use one of these methods.

By sharing the self diagnosis file among the PCs

A self diagnosis file is created by Self Diagnosis and stored in the following location:

Windows XP:
Shared
Documents\KONICAMINOLTA\CA-S20w\CalibrationFiles

Windows Vista and Windows 7:
Public
Documents\KONICAMINOLTA\CA-S20w\CalibrationFiles
Tip
The user account must have access rights (write permission) to this folder. If an error stating that data cannot be written to the shared folder occurs after Self Diagnosis, contact your nearest computer administrator.

Copy this file to the same folders in all the PCs which control the CA-2500/CA-2000 so that the self diagnosis file is shared among the PCs.

By performing Self Diagnosis for each PC before measurement

A self diagnosis file is stored in the PC for which Self Diagnosis was performed. You must then perform Self Diagnosis for every PC to create the remaining self diagnosis files.

4.1.4 When the CA-2500/CA-2000 is controlled by the automatic function

Even when the day specified in ‘Interval (number of days) at which to show this dialog’ in the Self Diagnosis starting dialog box is reached, this dialog box is not displayed when the CA-2500/CA-2000 is controlled automatically by the CA-S20w.

To perform Self Diagnosis because the automatic exposure fails or for any other reason, select *Instrument - Self Diagnosis* from the menu bar of the CA-S20w.
4.2 Index

Numerics

<table>
<thead>
<tr>
<th>3D graph</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D object</td>
<td>111</td>
</tr>
</tbody>
</table>

A

- Add page
- Additional
- Angle
- Applying formats
- area
- Auto
- Auto Extraction

B

- Backlight cancel

C

- CA-1500 | 88 |
- Calculation settings | 43 |
- Calibration files | 123 |
- Cascade/Tile | 123 |
- Changing the display size | 74 |
- Changing the items | 69 |
- Changing the settings | 69 |
- Chromaticity | 17 |
- Chromaticity diagram | 65 |
- Chromaticity distribution | 65 |
- Chromaticity limit | 71 |
- Circle object | 97 |
- Color | 105 |
- Color adjustment | 120 |
- Color Diff. | 70 |
- Color difference for spots | 70 |
- Color Difference Line | 109 |
- Color of a mark | 104 |
- Color region user calibration | 33 |
- Color region user calibration file | 34, 46 |
- Colorimetric data | 57, 60 |
- Comment | 55 |
- Comments | 30 |
- Component Measurement | 26 |
- Condition frame | 6 |
- Configure the required settings | 116 |
- Connection method | 14 |
- Continuous measurement | 48 |
- Contrast | 29, 51 |
- Coordinate | 104 |
- Copy each folder | 86 |

Create color region user calibration file | 8 |
Cross section | 59 |
Cross section diagram object | 112 |
Customization | 90 |

D

- Dark emission area | 24 |
- Data at Cursor Position | 102 |
- Data list | 6 |
- Data to the clipboard | 106 |
- Decimal digit | 106 |
- Decimal places | 100 |
- Decrease the size | 58 |
- Default.mct | 89 |
- Delete | 37 |
- Delete page | 92 |
- Deletes a spot | 37 |
- Deletes all the marks | 104 |
- Deletes the selected mark | 104 |
- Deleting document | 88 |
- Deleting saved measurement data | 86 |
- Difference Circle | 109 |
- Difference circle | 71 |
- Difference Line | 109 |
- Display items | 20 |
- Display Type | 109 |
- Displaying measurement data | 56 |
- Distribution | 117 |

E

- Edit Mode | 90 |
- Editing display object | 93 |
- Error | 101 |
- Error messages | 125 |
- Error pixels | 106 |
- Error recovery | 123 |
- Evaluation area | 6 |
- Evaluation area frame | 17, 28, 29 |
- Exposure | 17, 29 |
- Exposure setting | 24 |
- Exposure Setting Frame | 29 |
- Exposure setting frame | 19, 28 |
- Exposure Settings | 17, 24 |

F

- File - Open | 86 |
- File management | 84 |
- Finder | 17, 19 |
<table>
<thead>
<tr>
<th>Fix the exposure setting</th>
<th>... 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Font</td>
<td>... 103</td>
</tr>
<tr>
<td>Formats</td>
<td>... 86</td>
</tr>
<tr>
<td>Forward</td>
<td>... 119</td>
</tr>
<tr>
<td>Freq. Setting</td>
<td>... 23</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Graph settings</td>
<td>... 64</td>
</tr>
<tr>
<td>Graph + List</td>
<td>... 109</td>
</tr>
<tr>
<td>Graph area colors</td>
<td>... 105</td>
</tr>
<tr>
<td>Graph Only</td>
<td>... 109</td>
</tr>
<tr>
<td>Graph settings</td>
<td>... 58, 62, 66, 67</td>
</tr>
<tr>
<td>Graph toolbar</td>
<td>... 10, 91</td>
</tr>
<tr>
<td>Grid</td>
<td>... 29, 101</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>H-Axis</td>
<td>.. 121</td>
</tr>
<tr>
<td>Histogram</td>
<td>... 73</td>
</tr>
<tr>
<td>Histogram object</td>
<td>.. 121</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Ignore Pixels</td>
<td>... 44</td>
</tr>
<tr>
<td>Illumination</td>
<td>... 50</td>
</tr>
<tr>
<td>Image Correction</td>
<td>... 26</td>
</tr>
<tr>
<td>Interval</td>
<td>... 48, 100</td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>Judgement Error Spot</td>
<td>.. 108</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Label object</td>
<td>... 98</td>
</tr>
<tr>
<td>Layout</td>
<td>... 37</td>
</tr>
<tr>
<td>Lens</td>
<td>.. 17</td>
</tr>
<tr>
<td>Lens Position</td>
<td>... 23</td>
</tr>
<tr>
<td>Lens Type</td>
<td>... 23</td>
</tr>
<tr>
<td>Level for Lower limit</td>
<td>... 25</td>
</tr>
<tr>
<td>Line object</td>
<td>... 96</td>
</tr>
<tr>
<td>Line Width</td>
<td>... 108</td>
</tr>
<tr>
<td>Linear</td>
<td>... 26</td>
</tr>
<tr>
<td>Linking the chromaticity diagram and pseudocolor images (xy Graph Link)</td>
<td>... 75</td>
</tr>
<tr>
<td>List Only</td>
<td>... 109</td>
</tr>
<tr>
<td>Load a configuration file</td>
<td>... 19</td>
</tr>
<tr>
<td>Luminance</td>
<td>... 17</td>
</tr>
<tr>
<td>Lvuv’</td>
<td>.. 115</td>
</tr>
<tr>
<td>Lvxy</td>
<td>.. 115</td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Mark</td>
<td>... 104</td>
</tr>
<tr>
<td>Max</td>
<td>.. 100, 121</td>
</tr>
<tr>
<td>Measure</td>
<td>.. 17, 28</td>
</tr>
<tr>
<td>Measure luminance centroid distance</td>
<td>... 8, 69</td>
</tr>
<tr>
<td>Measurement</td>
<td>.. 21</td>
</tr>
<tr>
<td>Measurement screen</td>
<td>.. 7</td>
</tr>
<tr>
<td>Menu bar</td>
<td>... 8</td>
</tr>
<tr>
<td>Min</td>
<td>.. 100</td>
</tr>
<tr>
<td>Moving display objects</td>
<td>.. 95</td>
</tr>
<tr>
<td>Moving the display range</td>
<td>... 58, 62</td>
</tr>
<tr>
<td>Multi data</td>
<td>.. 65</td>
</tr>
<tr>
<td>Multi screen</td>
<td>.. 74</td>
</tr>
<tr>
<td>Multiple graphs simultaneously</td>
<td>.. 74</td>
</tr>
<tr>
<td>Multiple pieces of measurement data</td>
<td>.. 117</td>
</tr>
<tr>
<td>Multiple selection</td>
<td>.. 67</td>
</tr>
<tr>
<td>Multi-Point measurement</td>
<td>.. 35</td>
</tr>
<tr>
<td>Mura</td>
<td>.. 118</td>
</tr>
<tr>
<td>Mura control graph</td>
<td>.. 72</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Naming data</td>
<td>.. 30</td>
</tr>
<tr>
<td>New document</td>
<td>.. 89</td>
</tr>
<tr>
<td>None</td>
<td>.. 26</td>
</tr>
<tr>
<td>Normal Measurement</td>
<td>.. 23</td>
</tr>
<tr>
<td>Numeric</td>
<td>.. 43</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td>.. 39</td>
</tr>
<tr>
<td>Option</td>
<td>.. 122</td>
</tr>
<tr>
<td>Orientation</td>
<td>.. 64</td>
</tr>
<tr>
<td>Out of range</td>
<td>.. 75</td>
</tr>
<tr>
<td>Over Range</td>
<td>.. 101</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Page Setup</td>
<td>.. 77</td>
</tr>
<tr>
<td>Pasting graphs</td>
<td>.. 77</td>
</tr>
<tr>
<td>Peak level</td>
<td>.. 25</td>
</tr>
<tr>
<td>Pixel</td>
<td>.. 118</td>
</tr>
<tr>
<td>Positional user calibration</td>
<td>.. 33</td>
</tr>
<tr>
<td>Precision</td>
<td>.. 24</td>
</tr>
<tr>
<td>Preset</td>
<td>.. 116</td>
</tr>
<tr>
<td>Preview</td>
<td>.. 76</td>
</tr>
<tr>
<td>Previously created measurement condition</td>
<td>.. 76</td>
</tr>
<tr>
<td>Printing</td>
<td>.. 76</td>
</tr>
<tr>
<td>Pseudocolor</td>
<td>.. 21</td>
</tr>
<tr>
<td>Pseudocolor graph</td>
<td>.. 56</td>
</tr>
<tr>
<td>Pseudocolor object</td>
<td>.. 100</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>.. 75</td>
</tr>
<tr>
<td>Rectangle object</td>
<td>.. 97</td>
</tr>
</tbody>
</table>
Chapter 4: Appendix

- Releasing method .. 15
- Rename page ... 92
- Reports .. 76
- Resize .. 41
- Resizing display objects 94
- Resolution .. 25
- RGB image ... 6, 70
- RGB images ... 107
- RGB object .. 120
- RGB View ... 107
- Rotation .. 111

S

- Saturation pixels 29
- Saving and loading documents 84
- Saving the Multi screen 75
- Scale .. 121
- Scale Setting ... 122
- Selecting measurement data 63, 65
- Sending data ... 58, 62, 76, 78
- Sets the color ... 117
- Setting file ... 45
- Setting Mura ... 118
- Shape of the points 116
- Simple .. 26
- Size of the points 116
- Smear Compensation 17, 26
- Spot .. 35, 116
- Spot Area ... 29
- Spot Color .. 108
- Spot Count ... 39
- Spot frame ... 28, 35
- Spot frame set 19
- Spot measurement 19, 35
- Spot measurement graph 68
- Spot measurement setting screen 7
- Spot measurement settings 42
- Spot Object ... 107
- Standard deviation 43
- Statistics ... 102
- Status bar .. 9
- Surface data ... 79, 82
- Synchronized Measurement 23

T

- Target .. 109
- Template - Load 86
- Template - Save 86
- Template file ... 89
- Text format .. 81
- Threshold ... 37
- Tolerance .. 44
- Toolbar .. 9
- Transferring saved measurement data 86
- Type 1/Type 2/B/W 101

U

- u'v'-chromaticity 115
- Under Range ... 101
- Unevenness ... 72
- User Calibration 26, 32, 44, 161
- User Calibration Spot 108
- User Scale .. 122

V

- Variation of luminance/chromaticity 73
- V-Axis .. 121
- View ... 101
- View RGB ... 107
- Viewfinder ... 17
- Viewing angle correction 26

W

- W (1 Point) .. 33
- Window configuration 6

X

- X ... 26
- x-y (Multi-Data) 26
- xy-chromaticity 115
- xy-chromaticity diagram object 115

Y

- Y ... 26

Z

- Z ... 26
- Zoom in ... 58, 61, 66, 67
4.3 Automation Commands List

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional</td>
<td>Setting/Acquiring ‘Additional’ Values</td>
<td>156</td>
</tr>
<tr>
<td>AutoExposure</td>
<td>Setting/Acquiring Auto Exposure ON/OFF Setting</td>
<td>154</td>
</tr>
<tr>
<td>AutoNaming</td>
<td>Setting/Acquiring Auto Naming Function ON/OFF Setting</td>
<td>158</td>
</tr>
<tr>
<td>BLv after</td>
<td>Setting/Acquiring User Calibration Coefficients Set in Spots</td>
<td>162</td>
</tr>
<tr>
<td>BLv before</td>
<td>Setting/Acquiring User Calibration Coefficients</td>
<td>170</td>
</tr>
<tr>
<td>Bx after</td>
<td>Setting/Acquiring User Calibration Coefficients Set in Spots</td>
<td>162</td>
</tr>
<tr>
<td>Bx before</td>
<td>Setting/Acquiring User Calibration Coefficients</td>
<td>170</td>
</tr>
<tr>
<td>By after</td>
<td>Setting/Acquiring User Calibration Coefficients</td>
<td>162</td>
</tr>
<tr>
<td>By before</td>
<td>Setting/Acquiring User Calibration Coefficients</td>
<td>170</td>
</tr>
<tr>
<td>CalibrationType</td>
<td>Setting/Acquiring User Calibration Coefficient Type</td>
<td>162</td>
</tr>
<tr>
<td>CloseDocument</td>
<td>Closing a Document</td>
<td>136</td>
</tr>
<tr>
<td>ConnectInstrument</td>
<td>Connecting with an Instrument</td>
<td>139</td>
</tr>
<tr>
<td>ConnectInstrumentEx</td>
<td>Connecting the Measuring Instrument With the Specified Body Number</td>
<td>140</td>
</tr>
<tr>
<td>CreateSpot</td>
<td>Creating Spots</td>
<td>164</td>
</tr>
<tr>
<td>DeleteData</td>
<td>Deleting Displayed Measurement Data</td>
<td>137</td>
</tr>
<tr>
<td>DeleteSpot</td>
<td>Deleting Spots</td>
<td>165</td>
</tr>
<tr>
<td>DisconnectInstrument</td>
<td>Disconnecting From the Instrument</td>
<td>140</td>
</tr>
<tr>
<td>DisconnectInstrumentEx</td>
<td>Disconnecting From the Instrument By Specifying the Body Number</td>
<td>141</td>
</tr>
<tr>
<td>ExposureTableIndex</td>
<td>Setting/Acquiring Exposure Table Positions</td>
<td>155</td>
</tr>
<tr>
<td>FilterIndex</td>
<td>Setting/Acquiring the X/Y/Z Filter Number</td>
<td>157</td>
</tr>
<tr>
<td>FilterMeasure</td>
<td>Setting/Acquiring the X/Y/Z Individual Measurement Options</td>
<td>157</td>
</tr>
<tr>
<td>GetAreaData</td>
<td>Acquiring Measurement Data</td>
<td>144</td>
</tr>
<tr>
<td>GetAreaSize</td>
<td>Acquiring the Measurement Data Image Size</td>
<td>138</td>
</tr>
<tr>
<td>GetDataCount</td>
<td>Acquiring the Measurement Data List Count</td>
<td>138</td>
</tr>
<tr>
<td>GetDataProperty</td>
<td>Acquiring the Information of Measurement Data</td>
<td>147</td>
</tr>
<tr>
<td>GetDefaultSpotCondition</td>
<td>Acquiring Default Spot Setting Conditions</td>
<td>160</td>
</tr>
<tr>
<td>GetDefaultSpotConditionAsFile</td>
<td>Acquiring Default Spot Setting Conditions From Files</td>
<td>160</td>
</tr>
<tr>
<td>GetExposureTableCount</td>
<td>Acquiring Supported Exposure Table Position Count</td>
<td>155</td>
</tr>
<tr>
<td>GetInstrumentCount</td>
<td>Acquiring the Connectable Measuring Instrument Body Number</td>
<td>139</td>
</tr>
<tr>
<td>GetLastError</td>
<td>Acquiring Detailed Error Values</td>
<td>151</td>
</tr>
<tr>
<td>GetLensPositionCount</td>
<td>Acquiring Supported Lens Position Count</td>
<td>154</td>
</tr>
<tr>
<td>GetMeasurementCondition</td>
<td>Acquiring Measurement Conditions</td>
<td>147</td>
</tr>
<tr>
<td>GetMeasurementConditionAsFile</td>
<td>Acquiring Measurement Conditions From Files</td>
<td>148</td>
</tr>
<tr>
<td>GetSpotCondition</td>
<td>Acquiring Spot Setting Conditions</td>
<td>149</td>
</tr>
<tr>
<td>GetSpotConditionAsFile</td>
<td>Acquiring Spot Setting Conditions From Files</td>
<td>149</td>
</tr>
<tr>
<td>GetSpotData</td>
<td>Acquiring Spot Data</td>
<td>146</td>
</tr>
<tr>
<td>GetSpotListCount</td>
<td>Acquiring Spot Count</td>
<td>164</td>
</tr>
<tr>
<td>GetSpotSetting</td>
<td>Acquiring Spot Settings</td>
<td>165</td>
</tr>
<tr>
<td>GetUserCalibrationData</td>
<td>Acquiring the User Calibration Coefficient</td>
<td>159</td>
</tr>
<tr>
<td>GetUserCalibrationDataAsFile</td>
<td>Acquiring User Calibration Coefficients From Files</td>
<td>159</td>
</tr>
</tbody>
</table>
CHAPTER 4 : APPENDIX

GLv after
(Green Lv value after calibration) ... 162
Setting/Acquiring User Calibration Coefficients

GLv before
Setting/Acquiring User Calibration Coefficients

GLv after
(Green Lv value after calibration) ... 170
Setting/Acquiring User Calibration Coefficients Set in Spots

Gx after
Setting/Acquiring User Calibration Coefficients

Gx before
Setting/Acquiring User Calibration Coefficients Set in Spots

Gy after
Setting/Acquiring User Calibration Coefficients

Gy before
Setting/Acquiring User Calibration Coefficients

IgnorePixelColor
Setting/Acquiring Color Used to Calculate Ignore Number of Spot Pixels 169

IgnorePerPixel
Setting/Acquiring Ignore Number of Pixels For Spot Calculation................. 168

IsAvailableLens
Checking Whether a Lens is Supported .. 153

IsConnectInstrument
Checking Whether the Instrument Is Connected .. 139

Left, Top, Right, Bottom
Setting/Acquiring Spot Sizes .. 168

LensPosition
Setting/Acquiring Lens Positions ... 153

LowerLevel
Setting/Acquiring ‘Level for Lower Limit’ Values .. 156

Measure
Measuring an Object .. 141

MeasureCancel
Canceling a Measurement ... 143

MeasurementType
Setting/Acquiring Measurement Method .. 154

OpenFile
Opening a Specified File/Opening a New Document 135

PollingMeasure
Checking the Completion of a Measurement ... 143

Resolution
Setting/Acquiring Resolution .. 156

RLv after
Setting/Acquiring User Calibration Coefficients

RLv before
Setting/Acquiring User Calibration Coefficients

Rx after
Setting/Acquiring User Calibration Coefficients

Rx before
Setting/Acquiring User Calibration Coefficients Set in Spots

Ry after
Setting/Acquiring User Calibration Coefficients

Ry before
Setting/Acquiring User Calibration Coefficients

SaveFile
Saving a File .. 135

SaveObjectAsBMPFile
Saving View Screen Graphs or Images in Bitmap Format 150
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SelectData</td>
<td>Switching Displayed Measurement Data</td>
<td>137</td>
</tr>
<tr>
<td>SelectDocment</td>
<td>Activating a Document</td>
<td>136</td>
</tr>
<tr>
<td>SetDefaultSpotCondition</td>
<td>Setting Default Spot Setting Conditions</td>
<td>160</td>
</tr>
<tr>
<td>SetMeasurementCondition</td>
<td>Setting Measurement Conditions</td>
<td>148</td>
</tr>
<tr>
<td>SetMode</td>
<td>Setting CA-S20w’s Operation Mode</td>
<td>150</td>
</tr>
<tr>
<td>SetName</td>
<td>Setting Names</td>
<td>158</td>
</tr>
<tr>
<td>SetSpotCondition</td>
<td>Setting Spot Setting Conditions</td>
<td>149</td>
</tr>
<tr>
<td>SetSpotSetting</td>
<td>Setting Spot Settings</td>
<td>158</td>
</tr>
<tr>
<td>SetUserCalibrationData</td>
<td>Setting User Calibration Coefficients</td>
<td>166</td>
</tr>
<tr>
<td>ShowApplication</td>
<td>Showing/Hiding the CA-S20w</td>
<td>135</td>
</tr>
<tr>
<td>ShowSettingDialog</td>
<td>Showing/Hiding a Measure Dialog Box</td>
<td>147</td>
</tr>
<tr>
<td>SmearIndex</td>
<td>Setting/Acquiring the Smear Correction</td>
<td>158</td>
</tr>
<tr>
<td>SyncValue</td>
<td>Setting/Acquiring Synchronized Measurement Frequency</td>
<td>155</td>
</tr>
<tr>
<td>Type</td>
<td>Setting/Acquiring the spot type</td>
<td>168</td>
</tr>
<tr>
<td>WLv after</td>
<td>Setting/Acquiring User Calibration Coefficients</td>
<td>162</td>
</tr>
<tr>
<td>WLv before</td>
<td>Setting/Acquiring User Calibration Coefficients Set in Spots</td>
<td>170</td>
</tr>
<tr>
<td>Wx after</td>
<td>Setting/Acquiring User Calibration Coefficients</td>
<td>162</td>
</tr>
<tr>
<td>Wx before</td>
<td>Setting/Acquiring User Calibration Coefficients Set in Spots</td>
<td>170</td>
</tr>
<tr>
<td>Wy after</td>
<td>Setting/Acquiring User Calibration Coefficients</td>
<td>162</td>
</tr>
<tr>
<td>Wy before</td>
<td>Setting/Acquiring User Calibration Coefficients Set in Spots</td>
<td>170</td>
</tr>
<tr>
<td>X0,Y0,X1,Y1</td>
<td>Setting/Acquiring Auto Exposure Range</td>
<td>157</td>
</tr>
</tbody>
</table>