Data Management Software CL-S10w Ver.1.4

취급 설명서

• 안전상의 주의

사용하시기 전에 본 취급 설명서나 측정기, PC 의 취급 설명서를 잘 읽고 올바로 안전하게 사용하십시오.

본 서에서 사용하는 어플리케이션 이름 등의 정식 명칭

(본문 중의 표기)	(정식 명칭)
Windows, Windows 7	Microsoft [®] Windows [®] 7 Professional Operating
	System
Windows, Windows 8.1	Microsoft® Windows® 8.1 Pro Operating System
Windows, Windows 10	Microsoft® Windows® 10 Pro Operating System
Excel	Microsoft [®] Excel [®]

상표에 대하여

Microsoft, Windows, Windows 7, Windows 8.1, Windows 10, Excel 은 미국 및 기타 국가에서 미국 Microsoft corporation 의 등록상표입니다.

본 서에 관한 주의

- 본서 내용의 일부 또는 전부를 무단으로 전재하는 것은 금지되어 있습니다.
- 본 서의 내용은 향후 예고 없이 변경될 수 있습니다.
- 본 서는 내용에 대하여 만전을 기하고 있으나 만일 의심스런 점이나 오 류, 기재 누락 등이 발견되면 구입하신 판매처로 연락하십시오.
- 본 서의 지시에 따르지 않고 본 제품을 운영한 결과 발생한 사고에 대해서 는 상기의 내용과 관계없이 책임을 지기 어려우므로 미리 양해하여 주십 시오.

머리말

CL-S10w 는 분광 방사 조도계 CL-500A 또는 색채 조도계 CL-200/ CL200A 와 PC 를 접속하여 측정이나 측정 데이터의 그래프 표시를 할 수 있는 유틸 리티 소프트웨어 입니다.

Excel 의 애드인 (Add-Ins) 으로서 기동하고 Excel 로 데이터를 읽어 들입니다. 여기서 본 서는 Window 및 Excel 의 기본적인 조작을 숙지하신 분을 대상으로 작성되었습니다.

목차

머리말2
조작의 흐름1
측정 예2
1. Excel 시트의 준비2
2. 기종 설정2
3. 측정조건의 설정2
4. 측정의 실행2
CL-S10w 메뉴3
버전 표시3
측정화면4
1-1. 측정조건 설정①
CL-200/CL-200A5
<cf(보정)치의 대하여="" 사용에=""> CL-200/CL-200A6</cf(보정)치의>
1-2. 측정조건 설정② (기기)
1-3. 가져올 데이터의 항목 설정9
1-3. 가져올 데이터의 항목 설정9 1-4. 데이터를 받을 장치 (CL-200/CL-200A 인 경우는 수광부) 를 선택
1-3. 가져올 데이터의 항목 설정9 1-4. 데이터를 받을 장치 (CL-200/CL-200A 인 경우는 수광부)를 선택 합니다10
1-3. 가져올 데이터의 항목 설정

조작의 흐름

측정 예

템플릿을 이용하여 측정하는 방법을 설명합니다.

1. Excel 시트의 준비

시작 메뉴 - 모든 프로그램 - KONICAMINOLTA - (CL-S10w) - Template 을 선택 하고 템플릿을 엽니다.

「Measure_Trend」 시트를 선택합니다 .

(C) (2 (0 - 0) - 1			
Hote Inst Postand formale Orb	forms You Ald Dr.		8.00
GLODM *			
Men. Connauk			
N2) • (* A			
	J . L . N . F .		~ ~ ~ ~ ~
	-		
	100 Long Long Long Long Long Long Long Long		
	in the second se		
	100		
	100		
	* N N N N 1 N 1 N	N 10 10 1 10	
2			
There was not been as the second			
8			
8			
2			
2			
8			
The Party and Principal Aring 19			100 million (100
			and we have a

2. 기종 설정

- (1) Excel 의 "애드인 (Add-Ins)" 메뉴 안에 있는 "CL-S10w" 를 선택하고 「Select Instrument」를 클릭하여 기종선택 화면을 엽니다.
- (2) 접속할 기종을 선택합니다.
- <CL-200A 와 접속하는 경우 >

장치 드라이버의 설치 시 설정한 장치 관리자의 「USB Serial Port」 에 할당되어 있는 COM 포트를 설 정합니다.

Select Instru	ment		x
Instrument	CL-500A	•	
Port		~	
	OK	Cancel	

자세한 내용은 설치 가이드를 참조 하십시오.

<CL-200 과 접속하는 경우 >

PC 의 시리얼 포트 (보통은 COM1) 또는 RS-USB 변환 어댑터에 할당된 COM 포트를 설정합니다.

(3) 설정이 종료되면 OK 를 클릭합니다.

3. 측정조건의 설정

- (1) Excel 의 "애 드 인 (Add-Ins)" 메 뉴 안에 있는 "CL-S10w"를 선택하고 「Measure…」을 클릭하여 측정 화면을 엽니다.
 Excel 을 기동하여 처음으로 측정 화면을 열 때, 접속되어 있는 기종 또 는 측정기 (CL-200/CL-200A 인 경우는 수광부나 설정되어 있는 CF 값) 를 체크합니다. 측정기의 접속 수가 많을수록 시간이 걸립니다.
- (2) 템플릿의 조건 설정파일을 P.11「읽어 들이기」를 참고로 해서 로드하십시오.
 템플릿과 설정파일의 조합에 관해서는 P.17 을 참조해 주십시오.

A B	С	D	E	F	G	н	1	J
1								
2								
3	1 .			Ev				1.0000
4								0.9000
5								0.0000
0								0.6000
6	1 1							0.7000
9	1 1 🖿							0.8000
10	1 1 🖿							0.5000
11	0							0.4000
12								0.3000
13								0.2000
14	Ů							0.2000
15	1 "							0.1000
16	0 -							0.0000
1/	0	0.2	0.4	0.5	0.8	1	1.2	0
10								
20								
21								
22 No.	Serial No.	E¥	×	¥	Тор	duv		
23								
24								
25								
26		L	L			L		

L-500A		
Simple screen	AUTO	Close
User Calibration in	nfo	
Сноо:		
Measure		
Start	Stop	
- Mode -	Interval	
C Spot	Times	10
Interval	Interval (sec.)	0
Condition Data	Device(Head) Optic	ns Instrument
Illuminance Units	Ix	•
Observer	2 degree	•
Meas. Time	AUTO	•
User Cal. CH	CH00:	•
- Options		
Show title	Confirm	overwrites
Move cursor aff	ter meas 🔲 Update	in same place
Add data by a d	ol unit	
i nuo data by a t	or and	
		_
Transfer data usi	ng CL-500A key	

〈측정화면〉

4. 측정의 실행

Start 버튼을 클릭합니다.

측정이 이뤄지고 셀에 측정치 등의 데이터가 추가됩니다. 데이터에 연동하여 트랜드 그래프 (시계열 그래프)가 표시됩니다.

CL-S10w 메뉴

H Ŧ × Book1 - Excel _ ♀ Tell me... Sign in ♀ Share Home Insert Page Layout Formulas Data Review View Add-Ins File CL-S10w -측정화면 1------ Measure... 사용자 교정 설정 화면 2······· User Calibration(CF)... ~ 순위 리스트 설정 화면 3 ······ Rank List Setting... \checkmark f_{x} × 버전 표시..... Version... С D Е F G н 1 J ۰ 0 100 -1 Excel 템플릿 2 3 4 5 6

버전 표시

1-1. 측정조건 설정① CL-500A

여기에서의 설정은 측정기 본체에도 반영됩니다.

CL-500A		2
Simple screen	AUTO	Close
User Calibration in CHOO :	nfo	
Measure Start	Stop	
Mode C Spot	Interval Times	10
Interval	Interval (sec.)	0
Condition Data	Device(Head) Options	Instrument
Illuminance Units	lx	•
Observer	2 degree	•
Meas. Time	AUTO	•
User Cal. CH	CH00:	•
Options Show title Move cursor aft	☐ Confirm ov ter meas ☐ Update in s col unit	erwrites same place
🥅 Transfer data usi	ng CL-500A key	

KONICA MINOLTA

측정에 이용되는 사용자 교정에 대한 정보가 표시됩니다.

CL-500A 인 경우 : 「(사용자 교정 채널): (ID)」와 타임 스탬프

- Illuminance Units -

lx 또는 fcd 에서 선택 가능합니다 .

- Observer -

2°시야 (CIE 1931) 10°시야 (CIE 1964)

- Meas. Time -

 FAST : 노광시간 0.5 초로 측정하는 모드

 SLOW : 노광시간 2 초로 측정하는 모드

 AUTO : 측정 광원의 밝기에 따라 노광시간이 자동 설정 (0.5 ~ 27 초) 되어 측정하는 모드

 S-FAST: 노광시간 0.2 초로 측정하는 모드

- User Cal. CH -

선택 가능한 사용자 교정 채널이 「(사용자 교정 채널): (ID)」라는 표기로 리스트 업됩니다.

— Options —

☑ 체크되어 있는 경우	
Show title	: 측정 데이터의 선두 행에 항목 명이 들어갑니다 .
Confirm overwrites	: 기입할 셀에 이미 데이터가 존재할 경우는 측정이 시작되지 않습니다 .
	(메시 지가 표시됩니다 .)
Nove cursor after meas.	: 데이터 추가 시에 커서가 이동합니다 .
Jpdate in same place	: 행이 추가되지 않고 같은 위치에 데이터가 갱신됩니다 .
Add data by a col unit	: 열 수가 증가되는 방향으로 데이터가 추가됩니다. (체크되지 않았을 경우,
	행 수가 증가되는 방향으로 데이터가 추가됩니다 .)

1-1. 측정조건 설정① (CL-S10w) CL-200/CL-200A

측정기 본체의 설정내용은 변경되지 않습니다.

측정기 단독으로 사용하는 경우 본체 상에서 설정을 변경하십시오.

CL-200A/CL-200		>
Simple screen	(Normal)	Close
User Calibration info		
— Measure ————		
Start	Stop	
Mode	_ Interval	
C Spot	Times	10
Interval	Interval (sec.)	0
Condition Data De	vice(Head) Option:	s [Instrument]
Illuminance Units	IX	
Observer	2 degree	•
CF mode	- (Normal)	•
- Options		
Show title	🗖 Confirm o	verwrites
Move cursor after	meas 🔲 Update in	same place
Add data by a col	unit	
Transfer data using	CL-200.4 key	
mansier uata using	OL 200A Key	
		KONICA MINOLTA

- Illuminance Units -

lx 또는 fcd 에서 선택 가능합니다 .

- Observer -

CL-200/CL-200A 인 경우, 2°로 설정되어 있습니다. 변경할 수 없습니다.

$-\operatorname{CF}\operatorname{mode}-$

 – (Normal) 	: 측색용 표준 일루미넌트 A 를 교정 광원으로 한 공장교정
S(Multi)	: 측색용 표준 일루미넌트 A 를 교정 광원으로 한 공장교정
CF(CF Normal)	: CL-200/CL-200A 본체에 의한 사용자 교정
CF S(CF Multi)	: CL-S10w 에 의한 사용자 교정 (RGB 교정 / WRGB 교정 / 1 점 교정)

— Options —	
☑ 체크되어 있는 경우	
Show title	: 측정 데이터의 선두 행에 항목 명이 들어갑니다 .
Confirm overwrites	: 기입할 셀에 이미 데이터가 존재할 경우는 측정이 시작되지 않습니다 .
	(메시 지가 표시됩니다 .)
Move cursor after meas.	: 데이터 추가 시에 커서가 이동합니다 .
Update in same place	: 행이 추가되지 않고 같은 위치에 데이터가 갱신됩니다 .
Add data by a col unit	: 열 수가 증가되는 방향으로 데이터가 추가됩니다. (체크되지 않았을 경우,
	행 수가 증가되는 방향으로 데이터가 추가됩니다 .)

<CF(보정)치의 사용에 대하여> CL-200/CL-200A

이때 CL-S10w, CL-200/CL-200A 본체의설정은 아래 표와 같이 대응합니다.
 CL-200/CL-200A 에는 CF 값이 기입되는영역이 아래와 같이 2 개 있습니다.

A: CL-200/CL-200A 에서 교정한 계수를 기입하는 영역

B: CL-S10w 에서 교정한 계수를 기입하는 영역

CL-S10w에서 교정한 계수는 1 점 교정, RGB 교정 어떤 경우에도 B 의 영역에 기입됩니다.

	CL-200A	CL-200		
	표시창 최상단의 표시	표시창 최상단의 표시	교정모드	
CF Mode	(CF 키로 전환)	(CF 키로 전환)	(교정모드 전환 스위치로 전환)	
- (Normal)	-(공란)	-(공란)	NORM.	
S (Multi)	S	-(공란)	MULTI	
CF (CF Normal)	CF	CF	NORM.	▶ A 의 영역
CF S (CF Multi)	CF S	CF	MULTI	🕩 B의 영역

• 복수의 계수를 나누어 사용하고 싶은 경우 아래 순서를 실행하십시오.

CL-200/CL-200A 의 CL-S10w 에서 계수를 기입하는 영역은 1개입니다. (상기 B 의 영역)

① 임의 교정 시에 ☑ Save File 체크를 하고 파일을 저장

파일에 저장하면 조건설정 시에 기입작업을 함으로써 교정 시의 계수를 사용할 수 있습니다. 매회 교정을 할 필요가 없어집니다.

② 측정조건 설정 시에 Select and write cal. file to CL-200A/CL-200... 버튼을 눌러 기입 작업을 수행 CL-200/CL-200A 에 기입되어 있는 계수를 확인할 수 없으므로 매회 기입작업을 실시할 것을 권장합니다.

측정 대상에 따라 계수를 나누어 사용함으로써 정밀도가 높은 측정을 할 수 있습니다.

1-2. 측정조건 설정②(기기) CL-500A

측정기 본체에 저장된 각종 데이터를 읽어 들여 파일 저장하거나, 파일 관리된 설정 내용을 측정기 본체에 쓰거나 합니다.

C-500A		×
Simple screen A	UTO	Close
User Calibration info.		
CH00 :		
— Measure —		
Start	Stop	
	Interval	
C Spot	Times	10
Interval	Interval (sec.)	0
Condition Data Dev	vice(Head) Options	3 Instrument
User Calibration(CF	=)	
Save cal	l file from CL-500A.	
Select and w	rite cal. file to CL-5	00A
- Upload		
Upload	data from CL-500A	
- Rank		
Select and wr	rite rank file to CL-S	500A
🦳 Transfer data using	CL-500A key	
		KONICA MINOLTA

- User Calibration (CF) -

CL-200/CL-200A 인 경우에 유효한 기능입니다.

- Upload -

Upload data from CL-500A... 버튼

CL-500A 내에 저장된 측정 데이터가 입력되어 Excel 화면 상에 표시됩니다. Upload 항목의 「Date & Time」에는 측정기 본체에서 측정이 실시된 일시 (타임 스탬프)가 출력됩니다. -- Rank ---

Select and write rank file to CL-500A... 버튼

파일 (확장자 : scl) 을 지정하고 CL-500A 에 순위 리스트를 설정합니다.

1-2. 측정조건 설정②(기기) CL-200/CL-200A

측정기 본체에 저장된 각종 데이터를 읽어 들여 파일 저장하거나, 파일 관리된 설정 내용을 측정기 본체에 쓰거나 합니다.

CL-200A/CL-200		X		
Simple screen	(Normal)	Close		
User Calibration info.				
- Measure				
Start	Stop			
Mode	_ Interval			
C Spot	Times	10		
Interval	Interval (sec.)	0		
Condition Data Dev	ice(Head) Option:	s Instrument		
User Calibration(CF) ———			
Save cal. file	from CL-200A/CL-	-200		
Select and write cal. file to CL-200A/CL-200				
- Upload				
Upload data	from CL-200A/CL-	200		
Rank —		VOL 000		
Select and write ra	алк тпе то ОС-2004	17 GE-200		
Transfer data using C	CL-200A key			
		KONICA MINOLTA		

— User Calibration (CF) —

Save cal. file from CL-200A/CL-200... 버튼

「다른 이름으로 저장」화면이 표시되고 CF 파일 (확장자 : cfm) 로서 저장할 수 있습니다. 또한 CL-S10w 상의 설정이「CF 모드 : CF S(CF Multi)」가 됩니다.

Select and write cal. file to CL-200A/CL-200... 버튼

파일 (확장자 :cfm) 을 지정하고 CL-200/CL-200A 에 멀티 교정 시의 CF 값으로 설정합니다. 또한 CL-S10w 상의 설정이「CF 모드 : CF S(CF Multi)」가 됩니다.

- 메모 -

제어대상 수광부의 수와 CF 값을 설정하는 수광부의 수가 일치되어 있고, 제어대상 수광부의 시리얼 번호와 CF 값 파일 내의 수광부의 시리얼 번호가 작은 쪽부터 같은 순서로 나열되어 있어야 합니다.

- Upload -

CL-500A 인 경우에 유효한 기능입니다.

- Rank -

CL-500A 인 경우에 유효한 기능입니다.

1-3. 가져올 데이터의 항목 설정

CL-200/CL-200A 본체의 설정내용은 변경되지 않습니다.

□Data No. 기타

☑ 체크되어 있는 항목의 데이터가 Excel 상으로 입력됩니 다

Select Item 버튼

버튼을 누르면 입력 데이터 선택 화면이 표시됩니다. 여기서 선택한 항목이 리스트에 표시됩니다.

Tolerance 버튼

버튼을 누르면 한계치 설정 화면이 표시됩니다. 선택되어 있 는 항목에 대해 한계치를 설정합니다.

한계치의 설정

한계치를 설정하는 장치 (CL-200/CL-200A 인 경우는 수광 부)의 시리얼 번호를 선택하십시오.

— Tolerance —

한계치로서 상한치, 하한치를 입력하십시오. 공란인 경우 는 판정하지 않습니다.

Copy to all devices (heads) 버튼

버튼을 누르면 현재 선택되어 있는 장치(수광부)의 한 계치가 접속되어 있는 모든 장치(수광부)에 대해서 CL-S10w에서 설정됩니다.

(측정기 본체에는 한계치에 의한 판정기능은 없습니다)

메모 -

Tcp 「K」(KM) 와 Tcp 「K」(JIS) 에 대하여 Tcp 「K」(KM) :KONICA MINOLTA 가 CL-200/CL-200A 및 기 타 계측기에 종래부터사용하고 있는 KONICA MINOLTA 고유의 알고리즘에 의해 계산되는 색온도입니다. (색온도에 대한 생각은 JIS 의 그것과 같지만 연산시간 단축을 위해 고속계산 알고리즘을 채택하였습니다.) Tcp 「K」(JIS): JIS Z 8725 에서 규정되어 있는 계산식을 이용한 색온도 (CL-500A에서는 이것을 채택하였습니다.) Tcp 「K」(KM) 와 Tcp 「K」(JIS) 에서는 값에 약간의 차이가 생기는 경우가 있습니다. JIS Z 8725 에서 규정되어 있는 색온도를 산출할 수 있는 색도 범위에 있어서 Tcp 「K」(JIS) 를 기준으로 했을 때의 Tcp 「K」(KM) 의 오차량은 ± 3% 이내입니다. 특히 고온 영역을 제외한 대부분의 색온도 영역에서는 ± 1% 이내의 오차량이지만 색온도가 높은 영역에서는 오차가 커져 19000 [K] 를 초과하는 영역에서는 ± 2% 를 초과할 경우가 있습니다.

1-4. 데이터를 받을 장치 (CL-200/CL-200A 인 경우는 수광부)를 선택합니다.

CL-500A	CL-200A/CL-200
Simple screen AUTO Close	Simple screen - (Normal) Close
User Calibration info.	User Calibration info.
Measure	Measure
Start Stop	Start Stop
Mode Interval Times 10	C Spot Times 10
Interval Interval (sec.)	Interval Interval (sec.)
Condition Data Device(Head) Options Instrument	Condition Data Device(Head) Options Instrument
00 10001006	▼ 00 <u>30010020</u> □ 10 □ 20 □
🗖 of 🔽	
04	
05	
07	
09	
Zero Calibration Update	Update
Transfer data using CL-500A key	Transfer data using CL-200A key

00

X

접속되어 있는 장치 (CL-200/CL-200A 인 경우는 수광부)의 시리얼 번호가 표 시됩니다.

측정치를 표시할 측정기 (수광부)의 체크박스에 체크 □를 하십시오.

Update 버튼

CL-S10w 는 측정화면 또는 CF 화면을 최초로 기동했을 때에 접속되어 있는 기종 또는 측정기 (CL-200/CL-200A 인 경우는 수광부나 설정되어 있는 CF 값) 를 체 크합니다. 접속 체크 후에 측정기의 접속상태를 변경하거나 측정기 본체 측에서 임의 교정을 하거나 한 경우는 **Update** 버튼을 누르십시오.

1-5. 설정내용을 파일로 관리

CL-500A		
Simple screen AU	то	Close
User Calibration info CH00 :		
Measure		
Start	Stop	
● Mode ● Spot	Interval Times	10
C Interval	Interval (sec.)	0
Condition Data Devi	ce(Head) Options	Instrument
Clear	Г	Save
	<u>_</u>	
, ⊟ Hide an alarm mes setting file for the loaded.	under sage provided wher template has not b	n the een
Rank file		
	•	Load
Transfer data using C	L-500A key	

- Configuration file -

측정 조건이나 한계치 등 이 측정 화면 (Measure 프 레임, Condition 탭, Data 탭)에서 설정한 내용을 설 정 파일로서 저장하거나 읽을 수 있습니다.

Clear 버튼

지정되어 있는 설정 파일 (확장자: txt) 이 클리어 됩니다.

지정되어 있는 설정 파일 (확장자 : txt) 명이 표시 됩니다 .

- Rank file -

순위 리스트 설정 화면에서 작성한 순위 리스트 파 일을 읽을 수 있습니다.이에 따라 색도영역에 따른 순위 판정을 할 수 있습니다.

Clear 버튼

지정되어 있는 순위 리스트 파일 (확장자: scl) 가 클리어 됩니다.

Save 버튼

현재의 설정 내용을 설정 파일 (확장자 :txt) 로 저 장합니다.

지정된 설정 파일의 내용이 측정 화면을 열때마다 반영됩니다.

Load 버튼

설정 파일 (확장자 : txt) 을 지정합니다.

지정된 설정 파일의 내용이 측정 화면을 열 때마 다 반영됩니다.

템플릿 선택에 관해서는 P.17 을 참조해 주십시오.

□ Hide an alarm message provided when the setting file for the template has not been loaded.

템플릿을 이용하여 측정할 경우에는 그 템플릿 전용 설정 파일을 읽어 들일 것을 권장합니다. 읽 히지 않은 경우에는 경고 메시지가 표시됩니다. 이 경고 메시지가 표시되지 않도록 하기 위해서 는 체크를 하십시오.

지정되어 있는 순위 리스트 파일 (확장자: scl) 명이 표시 됩니다.

Load 버튼

순위 리스트 파일 (확장자 : scl) 을 지정합니다 . 지정된 순위 리스트 파일의 내용이 반영됩니다 . 또한 CL-S10w 의 다음 번 기동 시부터도 반영됩 니다 .

1-6. 측정 실시

상세측정 화면

 「Meas. Time」(CL-500A 인 경 우), 「CF Mode」 (CL-200/CL-200A 인 경 우)의 설정에 따라 표시 가 전환됩니다.

Simple screen 버튼 누르면 측정 간이화면이 됩니다.

- Mode --Spot/Interval 측정을 선택합니다.

Interval —
 인터벌 측정의 횟수와 간격을 설정합니다.

□ Transfer data using CL-500A/CL-200A key

☑ 체크되어 있는 경우에 CL-S10w 는 전송 모드가 됩니다. CL-500A 접속인 경우, 또는 CL-200A 의 수광부가 1 점뿐인 접속인 경우에 유효합니다.

전송모드 중에는 CL-500A의 측정 버튼 또는 CL-200A의「▲/D-OUT」키를 누름으로써 데 이터가 전송되고 Excel 시트에 추가됩니다. CL-200A 인 경우는 CL-S10w에서의 설정에 관계없이 CL-200A 본체에서의 설정에 따른 데 이터가 전송됩니다. 또한 전송모드 중이라도 CL-200A 본체의 홀드 버턴을 누르면 표색치의 항목을 변경할 수 있습니다. 한계치에 의한 판 정기능은 실시되지 않습니다.

Detailed screen 버튼

누르면 측정 상세화면이 됩니다.

Spot 측정

① **Spot** 선택하십시오 .

- ② **Start** 버튼을 누르십시오.
- 1 회 측정하고 데이터가 Excel 시트에 표시됩니다.

Interval 측정

- ① Interval 선택하십시오.
- ② Times, Interval (sec.) 을 입력하십시오.
 - Times : 1~100,000

Interval (sec.): 0~3,600(0으로 설정하면 연속측정이 됩니다)

- 메모
 - 간격은 실제 측정시간보다 길어지도록 설정하십시오.
- Excel 에 많은 데이터를 축적하거나 한꺼번에 많은 소프 트웨어를 열어 놓은 경우 등에는 Excel 의 동작이 늦어지 거나 Excel 이 강제종료될 수 있습니다. CL-S10w 에서 분광데이터 등 많은 데이터를 연속해서 읽어 들일 때는 데이터를 보호하기 위해서 적절히 Excel 파일을 저장할 것을 권장합니다.
- ③ **Start** 버튼을 누르십시오.

설정한 횟수만큼 측정하고 측정할 때마다 데이터가 Excel 시트에 표시됩니다.

데이터는 선택되어 있던 셀로부터 추가됩니다.

Stop 버튼을 누르면 인터벌 측정이 중지됩니다.

한계치가 설정되어 있고 한계치 범위 밖

D . N						
Data No	Date&Time	Serial No.(0)	Ev[lx](0)		x(0)	y(0)
1	2010/04/15 14:04:22	73630105	244,6900	J	0.3885	0.4044
2	2010/04/15 02:04:23	73630105	590.9800	C	0.3885	0.4052
3	2010/04/15 02:04:25	73630105	679.9300	0	0.3877	0.4057
4	2010/04/15 02:04:26	73630105	614.5300	C	3885	0.4054
5	2010/04/15 02:04:28	73630105	603.9500	C	0.3856	0.4055
6	2010/04/15 02:04:29	73630105	604.1500	C	0.3856	0.4055
7	2010/04/15 02:04:30	73630105	600.0400	0	0.3856	0.4055
8	2010/04/15 02:04:31	73630105	608.8200	Π	3885	0.4055
9	2010/04/15 02:04:33	73630105	610.7300		0.3856	0.4054
10	2010/04/15 02:04:34	73630105	619,1100	11	.3885	0.4054

사용자 교정 화면

2. 사용자 교정에 대하여 설정합니다 . CL-500A

Save File 이 전체크되어 있는 경구, **Cal.** 지에 나는 이름 으로 저장」 화면이 표시되고 보정치가 파일 (확장자 : cfl) 로서 저장됩니다.

사용자 교정 화면

2. 사용자 교정에 대하여 설정합니다 CL-200/CL-200A

Update

CL-S10w 는 측정 화면 또는 CF 설정 화면을 최초로 기동했을 때에 CL-200/CL-200A 본 체 측에서 접속되어 있는 수광부나 설정되어 있는 CF 값의 체크를 합니다. 접속체크 후 에 수광부의 접속상태를 변경하거나 CL-200/ CL-200A 본체 측에서 임의 교정을 하거나 한 경우는 **Update** 버튼을 누르십시오. Head — 접속되어 있는 수광부의 시리얼 번호가 표시됩 니다.

사용자 교정을 실시할 수광부의 체크 박스에 체크 ☑를 넣으십시오 .

- ② Select calibration 교정모드를 선택하십시오.
- ③ OK 버튼을 누르십시오. 선택한 교정모드에 따른 사용자 교정 화면이 표시됩니다.

00	🔽 Serial I	No. : 3001	0020	C RGB	6	RGBW	
	1	Measured dat	a			Set data	
	Ev[lx]	×	у		Ev[lx]	×	У
White:				Measure			
Red:				Measure			
Green:				Measure			
Blue:				Measure			
					C	opy To All Hea	ad

······· ④ 교정 기준점을 설정하는 수광부의 번호를 선 택하십시오.

수광부의 시리얼 번호가 표시됩니다.

⑤ Measure 버튼을 누르십시오. 접속되어 있는 모든 수광부에 대하여 측정이 이루어져 선택하고 있는 수광부의 데이터가 표시됩니다.(3 회 측정 평균치)

••••• ⑥ 교정 기준점을 입력하십시오.

Copy To All Head 버튼을 누르면 현 재 선택되어 있는 수광부의 설정치가 접속되 어 있는 모든 수광부의 설정치로서 복사됩니 다.

· ⑦ Cal. 버튼을 누르십시오.

측정 데이터를 입력한 교정 기준점에 맞도록 보정계수 (CF 값)가 산출되어 CL-200/CL-200A에 멀티 교정시의 CF 값으로서 설정됩니 다.

메모 —

가장 번호가 작은 수광부의 교정 기준점이 CL-S10w의 다음 번 기동시부터 설정치에 반 영됩니다.

······ ☑ Save File 체크되어 있는 경우에, Cal. 시에「다른 이름으로 저장」 화면이 표시되고 CF 파일 (확장자 :cfm) 로 저장할 수 있습니다.

순위 리스트 설정 화면

3-1. 순위 리스트 선정

Load 버튼

순위 리스트 파일 (확장자 :scl) 을 지정합니다 . 파 일에 저장되어 있는 순위 선별 리스트가 읽히고 표 시됩니다 .

샘플로 LED 의 색도 선별용 순위 리스트 파일이 준비되어 있습니다.

CL-S10w 를 설치한 폴더 아래의 Template 폴더에 있습니다.

(예) C: /Program Files/KONICAMINOLTA

/CL-S10w/Template /Fluorescent_Lamp.scl

No. Rank name

☑ 체크되어 있는 번호의 순위가 선별 대상이 됩니다.

- 메모 –

색도역이 중복되어 있는 경우에는 번호가 작은 순위에 의한 선별이 우선됩니다.

•••••리스트 상에서 선택되어 있는 순위가 표시됩니다.

Up 버튼

선택되어 있는 순위가 위로 이동합니다.

Down 버튼

선택되어 있는 순위가 아래로 이동합니다.

Add 버튼

버튼을 누르면 순위편집 화면이 표시됩니다.신규 순위를 작성하고 리스트에 추가합니다.리스트에 는 최대 20 개의 순위를 등록 가능합니다. (<u>3-2. 순위 추가 및 편집</u> 참조)

Edit 버튼

버튼을 누르면 순위 편집 화면이 표시됩니다.(리 스트 상에서 순위를 더블 클릭해도 순위 편집 화 면이 표시됩니다.) 리스트 상에서 선택되어 있는 순위를 편집합니다. (<u>3-2. 순위 추가 및 편집</u> 참조)

Delete 버튼

버튼을 누르면 리스트 상에서 선택되어 있는 순 위가 삭제됩니다.

□ Save File

☑ 체크되어 있는 경우는 OK 시에「다른 이름으로 저장」 화면이 표시되고 순위 리스트 파일 (확장자:scl) 로서 저장할 수 있습니다. 또한 CL-S10w의 다음 기동 시부터 반영됩니다.

🗌 Zoom

☑ 체크되어 있는 경우에 그래프의 스케일은 리스
 트 상에서 체크되어 있는 번호의 순위가 모두 표
 시되는 범위에서 확대됩니다.

순위 편집 화면

3-2. 순위 추가 및 편집

Na	am	le
----	----	----

순위 명을 입력합니다. (반각 40 문자까지)

- Chroma - - Tcp (JIS) -

x,y 또는 Tcp,duv 를 입력하고 Add 버튼을 누르 면 아래 리스트에 색도점이 추가됩니다.리스트 에는 3~10개의 색도점이 등록 가능합니다.

- 0.000 < x < 1.000
- 0.000 < y < 1.000
- $1,563 \leq Tcp < 100,000$
- -0.1 $\leq duv \leq 0.1$

Edit 버튼

버튼을 누르면 색도점 편집 화면이 표시됩니다. (리스트 상에서 색도점을 더블 클릭해도 색도점 편집 화면이 표시됩니다.) 리스트 상에서 선택되어 있는 색도점을 편집합니 다.

Delete 버튼

버튼을 누르면 리스트 상에서 선택되어 있는 색 도점이 삭제됩니다.

Zoom

☑ 체크되어 있는 경우에 그래프의 스케일은 등록 되어 있는 색도점이 모두 표시되는 범위에서 확 대됩니다.

···· 리스트 상의 색도점이 순서대로 직선으로 접속되 며 작화됩니다.

CL-S10w에는 미리 템플릿이 준비되어 있습니다.

「Measure_Trend」 Sheet/ 「Measure_uv」 Sheet/ 「Ranking」 Sheet

템플릿은 CL-S10w 를 설치한 폴더 아래의 Template 폴더에 있습니다.

(예) C:/Program Files/KONICAMINOLTA/CL-S10w/Template

또한 시작 메뉴의 「모든 프로그램」에 등록된 KONICAMINOLTA - (CL-S10w) - Template 을 선택하면 템플릿이 기동합니다. 템플릿과 선택할 설정파일의 조합은 아래 표를 참조해 주십시오.

— 메모 —

템플릿 사용시 측정범위외 등과 같은 무효 데이터가 포함되어 있는 경우, 정상적인 데이터도 색도도상에 표시되지 않습니다. 리스트상의 무효 데이터를 삭제하면 색도도상에 정상치 데이터가 표시됩니다.

템플릿 파일명	조건설정 파일명
	Template_Trend("Measure_Trend"sheet)
Template	Template_uv("Measure_uv"sheet)
	Template_Rank("Ranking"sheet)
Template_CRI	Template_CRI
Template_CRI&Spectral	Template_CRI&Spectral
Template_MacAdamEllipse	
Template_MacAdamEllipse_shifted	Template_macAdamEmpse
Template_Multi_2	
Template_Multi_5	Tomplata Trand
Template_Multi_13	Template_Itend
Template_Multi_30	
Template_MultiRank	Template_Rank
Template_Spectral	Template_Spectral

「Measure_Trend」 Sheet

「Measure_uv」 Sheet

L-200A/CL-200			X		(1)
Simple screen	(Normal)	Close	1		0
- User Calibration info			_		
			1		
Measure					
Start	Stop				
- Mode	Interval				
C Spot	Times	10			
Interval	Interval (sec.)	0			
Condition Data De	vice(Head) Option	is Instrume	nt		
Illuminance Units	lx	2	J		
Observer	2 degree	1	J	•••••	
CF mode	- (Normal)	1	J		
- Options					
Show title	Confirm	overwrites			
Move cursor after	meas IUpdate i	n same place			
Add data by a col	unit				
Transfer data using	CL-200A key				
		KONICA MINO	JA		
					~
					(2)

×

. . .

Close

10

0

•

-

•

 1 설정 파일 「Template_Trend.txt」 을 읽어 들입니다.

- **Options** -- 「Show title」의 □ 체크가 해제되고 읽어 들일 Data No., Serial No., Ev[lx], x, y, Tcp[K] (KM), duv (KM) 가 선택 됩니다.

설정 파일을 읽어 들이는 방법에 대해서는 <u>P.11</u> [1-5. 설정내용을 파일로 관리<u>]</u>를 참조하십시오 .

Condition Data De	vice(Head) Options Instrument
Data No. Date&Time MAX(Ev) MIN(Ev) AVE(Ev)	Serial No. Ev[b] × Tep[K](KM) duv(KM)
Select Item	
Tolerance	

② **Start** 버튼을 클릭합니다.

 설정 파일「Template_uv.txt」을 읽어 들입니다.
 — Options — 「Show title」의 □ 체크가 해제 되고 읽어 들일 Data No., Serial No., Ev[lx], u', v', Tcp[K] (KM), duv (KM) 가 선택됩니다.
 설정 파일을 읽어 들이는 방법에 대해서는 P11「1-5. 설정내 용을 파일로 관리」를 참조하십시오.

	Condition Data Device(Head) Options Instrument	
•••••	Image: Data No. Serial No. Ev[bx] Ev[bx] Image: Date8Time U/U Image: MAX(Ev) Tcp[k](KM) duv(KM) MIN(Ev) Image: AVE(Ev) AVE(Ev)	
	Select Item	

■ ② [Start] 버튼을 클릭합니나.

CL-200A/CL-200

Measure

Mode

Observer

CF mode

Options

C Spot

Start

Interval

Illuminance Units

Add data by a col unit

Simple screen - (Normal)

Interval

Condition Data Device (Head) Options Instrument

2 degree

- (Normal)

🔽 Move cursor after meas 🔲 Update in same place

Times

Confirm overwrites

Interval (sec.)

User Calibration info.

Ranking Sheet

L-200A/CL-200		×
Simple screen	- (Normal)	Close
- User Calibration inf	0.	
Measure		
Start	Stop	
Mode	Interval	
C Spot	Times	10
Interval	Interval (sec.)	0
Condition Datable	abies (Habri) I Obtions	b Instrument b
para l'para l'p	evice triedus Optiona	s as a monter of
Illuminance Units	lx	-
Observer	2 degree	<u> </u>
CF mode	- (Normal)	•
Options	_	
Show title	🗌 Confirm o	verwrites
Move cursor afte	r meas 🔲 Update in	same place
Add data by a co	ol unit	

 설정 파일「Template_Rank.txt」을 읽어 들입니다.
 — Options — 「Show title」 의 □ 체크가 해제 되고 읽어 들일 Data No., Serial No., Ev[Ix], x, y, Tcp[K] (KM), duv (KM), Rank 가 선택됩니다.
 설정 파일을 읽어 들이는 방법에 대해서는 P.11「1-5. 설정내 용을 파일로 관리」를 참조하십시오.

	Condition Data Dev	vice(Head) Options Instrument
	🗹 Data No.	Serial No.
••••	🗖 Date&Time	X
	MAX(Ev)	Tcp[K](KM)
	MIN(Ev)	Rank
	AVE(Ev)	
	Select Item	
	Tolerance	

② 순위 리스트를 지정하고 Start 버튼을 클릭합니다.

기타 템플릿의 예

연색 평가수용 템플릿 「Template_CRI.xls」의 「Color Rendering Index」 Sheet

CL-500A		×
Simple screen User Calibration inf CH00 :	AUTO	Close
Measure Start Mode © Spot © Interval	Stop Interval Times Interval (sec.)	10
Condition Data D	evice(Head) Options	Instrument
Illuminance Units	İx	
Observer	2 degree	•
Meas. Time	AUTO	•
User Cal. CH	CH00:	•
Options Show title Move cursor after Add data by a co	Confirm ov r meas Update in s ol unit	erwrites same place

① 설정 파일「Template_CRI.xls」을 읽어 들입니다. — **Options** — 「Show title」의 □ 체크가 해제 되고 읽어 들일 Data No., Serial No., Ev[lx], x, y, Tcp[K] (JIS), duv (JIS), Peak Wavelength, Ra, R1~R15 가 선택됩니다.

설정 파일을 읽어 들이는 방법에 대해서는 <u>P.11^{-5.} 설정내</u> 용을 파일로 관리<u></u>를 참조하십시오.

 Condition Data Data No. Date&Time MAX(Ev) MIN(Ev) AVE(Ev)	Device(Head) Options Instrument Serial No. Ev[k] x y Tcp[K[JIS] du/JIS] Peak Wavelength Ra R2 R3 R4 R5
Select Item	R6 R7 R8 R8
Tolerance	RĨO -

연색 평가수와 분광그래프를 동시에 묘화하는 템플릿「Template_CRI&Spectral.xls」

	В	С	D	E	F	G	н	1	J	K	L	м	N	0	Р	Q	R	S
1		1.20E+00	r															
2																		
4		1.00E+00	<u> </u>															
5																		
6		8 00E-01																
7																		
9		\$ 6.00E-01																
10																		
11		A 00E-01																
12																		
13		2.005-01																
15		2.000-01																
16		0.005+00	L															
17		0.000100		41000		ine .	510pe	560~~		510pp	660na	710-		760.00				
18		96		-rom	*		o rodili	360111	,		000111	710		- overall				
20					-										-			
21	No.	L I						1										
22	Serial No.	Ť																
23	Еу																	
24	×													<u>.</u>				
26 27	Top (JIS) duy (JIS)																	
28	Peak Wavelength																	
29																		
30				÷										÷				÷
31				+														
33	364nm			1	1									<u>^</u>				
34	365nm																	[]
35	366nm														+			
36	367nm			+	+									÷				+
38	369nm														+			
39	370nm			1	1	1]	[1			[1	1			î
40	371 nm			Ļ					ļ					Ļ				
41	372nm						+								+			
42	37.5nm			+	+									+	+			
44	375nm			1		+	1			1	1	1			+	1	1	
45	376nm																	
46	377nm																	
47							+								+			
48	373000			+	+					+				+	+			
50	381 nm			1	+	+	1			1	1	1		1	+	1	1	
51	382nm																	

CL-500A		×	(1)
Simple screen	AUTO	Close	
User Calibration i CH00 :	nfo		
Measure Start Mode Spot	Stop Interval Times	10	
Interval	Interval (sec.)	0	
Condition Data	Device(Head) Options	Instrument	
Observer	2 degree	•	
Meas. Time	AUTO	•	
User Cal. CH	CH00 :	•	
Options Show title Move cursor af Add data by a	☐ Confirm ov ter meas ☐ Update in s col unit]	erwrites same place	

① 설정 파일「Template_Spectral.xls」을 읽어 들입 니다.

— Options — 「Show title」의 □ 체크가 해제되고「Add data by a col unit」에 체크가 됩니다. 읽어들일 Data No., Serial No., Ev[Ix], x, y, Tcp[K] (JIS), duv(JIS), Peak Wavelength, Spectral 이 선택됩니다.
 설정 파일을 읽어 들이는 방법에 대해서는 <u>P.11「1-5. 설정대</u>용을 파일로 관리」를 참조하십시오.

Condition Data De	vice(Head) Options Instrument
Data No. Date&Time MAX(Ev) MIN(Ev) AVE(Ev)	Serial No. Ev[k] × Y Tcp[K]UIS) duru[JS] Peak Wavelength Spectral
Select Item	

② **Start** 버튼을 클릭합니다.

② **Start** 버튼을 클릭합니다.

연색 평가수와 분광그래프를 동시에 묘화하는 템플릿 「Template_CRI&Spectral.xls」

① 설정 파일「Template_CRI&Spectral.txt」을 읽어 들입니다.

설정 파일을 읽어 들이는 방법에 대해서는 <u>P.11「1-5. 설정내용을 파일로 관리」</u> 를 참조하십시오.

② **Start** 버튼을 클릭합니다.

5 점 측정용 템플릿 「Template_Multi_5.xls」의 「Measure_Trend 5」 Sheet

CL-200A/CL-200		X	(
Simple screen	- (Normal)	Close	
User Calibration info			
1	J		
Measure			
Start	Stop		
Mode	Interval		
C Spot	Times	10	
Interval	Interval (sec.)	0	
Condition Data De	evice(Head) Options	Instrument	
••••	••••	••••••	• • • • • •
Illuminance Units	lx .		
Observer	2 degree	•	
CF mode	- (Normal)	•	
- Options			
Show title	🗌 Confirm ov	erwrites	
Move cursor after	r meas 🔲 Update in s	ame place	
Add data by a co	lunit		

① 설정 파일「Template_trend.txt」을 읽어 들 입니다. — **Options** — 「Show title」의 □ 체크가 해제되고 읽어 들일 Data No., Serial No., Ev[lx], x, y, Tcp[K] (KM), duv (KM) 가 선택됩니다.

13 점 측정용 템플릿 「Template_Multi_13.xls」의 「Measure_ANSI lumen 13」 Sheet

- ① 설정 파일「Template_trend.txt」을 읽어 들입니다.
- ② **Options** 「Show title」의 □ 체크가 해제되고 읽어 들일 Data No., Serial No., Ev[lx], x, y, Tcp[K] (KM), duv (KM) 가 선택됩니다.
- ③ Excel 상에서 「번호」의 아래에 있는 셀에 커서를 맞추고 Start 버튼을 클릭 합니다.
- 사전에 Excel 의 매크로 보안의 보안 수준을 「보통」으로 해 놓을 필요가 있습니다.
 - ① 메뉴 바의 "도구 "에서 " 옵션 " 을 선택합니다.
 - ●「옵션」다이얼로그가 표시됩니다.
 - ② 「보안」 탭을 클릭하고 매크로 보안 버튼을 클릭합니다.
 - 「보안」 다이얼로그가 표시됩니다.
 - ③ 「보안 수준」 탭 내에 있는 ○보통을 선택하고 **OK** 버튼을 클릭합니다.
 - ④ 「옵션」다이얼로그에서 **OK** 버튼을 클릭합니다.
 - **주의** 매크로 보안 설정은 Excel에 기억됩니다. CL-S10w 를 사용할 때만 보통 수준으 로 하는 것이라면 기타 사용시에는 필요한 다른 수준으로 다시 설정하십시오.

② **Start** 버튼을 클릭합니다.

다점 (~ 30 점) 측정용 템플릿 「Template_MultiRank.xls」 의 「Ranking」 Sheet

MacAdam 의 SDCM 그래프 묘화용 템플릿 「Template_MacAdamEllipse.xls」 「Template_MacAdamEllipse_shifted.xls」

※ 2 종류가 있지만 타원의 위치가 다를 뿐 사용방법은 같습니다.

① ① 설정 파일「Template_MacAdamEllipse.txt」을 읽어 들입니다.

설정 파일을 읽어 들이는 방법에 대해서는 P.11 「1-5. 설정내용을 파일로 관리」 를 참조하십시오.

② **Start** 버튼을 클릭합니다.

